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ABSTRACT

This research effort presents a new approach to programming language design.
Essentially, we have studied the close relationships of program structures and the data
structures they use, and found that reorienting programming style to emphasize these
relationships is a fruitful direction for future language designs. As a vehicle for
studying these relationships, a language "basis" is developed--a set of primitives, a
syntax, and an interpretation. The basis is "incomplete” in that it does not define a real
programming language, nor are all "fundamental® aspects of language design considered.
However, one is able to describe many algorithms concisely in the basis, which leads us
to believe it represents a significant step in programming language design.

We may ascribe the primary influences on the work to structured programming
studies and the programming languages Bliss, APL, and LISP. Secondary influences
include formal approaches to language design and program optimization. The parallel
work of Backus shares the basic precepts of pointerless representation and the concise

nature of combinatoric constructs; however, they differ radically in both approach and
emphasis.

Our approach to the design of the basis may be characterized as a derivative of
"structured programming” studies. In particular, “gotoless programming” proponents
advocate replacement of most explicit program pointers ("goto"s) in programming
languages by a set of control constructs--grouping, subroutine call, conditional,
selection, looping, and escape facilities--which impose a nested-sequential static
structure on programs. The germinal idea of this work is that perhaps the gotoless
constructs can be applied to nested-sequential structures in general--independent of
whether the structure is thought to represent program or data. We will then have a
"pointerless” representation for both structures.

Another desirable aspect of programs is that the invocation of the "next" instruction
to be executed is implicit; conventional data structures, on the other hand, must be
explicitly "pulsed” to obtain the next element. Very often, a one-to-one identification
can be made between program elements and the data structure elements they access.
(For example, a one-to-one identification between elements of an array and the
incarnations of a loop body can frequently be made.) The basis is designed to emphasize
this aspect of programs through the use of operators which apply programs to data
“cosequentially".




One of the "gotoless" constructs which does constitute use of an explicit "program
pointer” is the (potentially recursive) subroutine call. The research proposes
structuring the use of this pointer by substituting a set of "recursionless” constructs in
traditional programming languages (such as Algol); the analogy with "gotoless"
constructs is direct--no explicit recursive calls are required for recursive effects. The

data structure involved in implementing a recursive function parameter mechanism

follows the control structure so explicitly that a stack is frequently used to contain both
data and control information. “"Corecursive" operators--directly analogous to
cosequential operators--are thus introduced to emphasize the close relationship
between recursive data and control structures.

In specifying a programming language "basis”, we are admitting open-endedness a

priori. We feel that a formalization o’ this basis should prove beneficial to program

correctness techniques and formal semantics specification language development.
Additionally, program/data structure optimization and representation issues are unified
by the approach. We expect that a language developed from this basis will be

analozous in power for nested-sequential structures to APL for homogeneous, parallel
structures.
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CHAPTER |

INTRODUCTION AND APPROACH

Goals

All research in the field of programming language design requires justification in this
era of language proliferation. The fashionable criterion for effective progress in this
field is that any new language provide an “"order of magnitude improvement” over the
existing paragon. Until a language meets the criterion, there should be no new
compilers, no reprogramming, no low-yield design efforts, etc. Aside from the obvious
fiscal benefits, new language projects should decrease and the field of programming
tanguages should advance by more fundamental, farge increments. Additionally, the
criterion is “"suitably vagus": a designer who claims his new language meets it riust
identify the nature of the improvement that the language represents.

The primary goal of this dissertation is to indicate that an order of magnitude
improvement in general purpose programming languages is possible, and to provide a
basis for such a language. The basis is such that its extension to a real programming
language is non-trivial. Rarely can traditional language constructs enter the language
unaltered; frequently, they are found already embedded in the language in a
fundamental way. Some justification will be given for suspecting that consistent
incorporation of truly alien constructs into the language tends to be "synergistic"--the
actual gain is more than could have been expected from experience with the constructs
in other languages.

Indeed, the development of the language basis did not proceed from the criterion
above, but rather from insight into a pointerless program/data structure representation
arising from structured programming “gotoless” program studies. The resultant basis
was observably more concise than general purpose programming fanguages such as
Algol [NA]. Hence, as an attempt to discern the source of this conciseness, the order of
magnitude criterion was studied in terms of languages which have in some sense met "
the criterion (with respect to therr predecessors). We concluded that fundamental
improvement in languages has not arisen from extension of contemporary tanguages, but
rather by a reformulation of languages which emphasize common interrelationships of
concepts obscured in their predecessors.

The somewhat pretentious claim that our considerations of the germinal "pointerless
2 representation” concept may lead to a programming language which meets the order of
magnitude criterion is not intended to belittle the original considerations in the

development of the basis, but rather to emphasize their importance.




INTRODUCTION AND APPROACH 2

We proceed by placing this work in the programming language design milieu. Next
the order of magnitude improvement criterion is examined more closely, along with
aspects of language design contributing toward its satisfaction. We then establish the
approach and essential concepts embodied in the remainder of this work.

Programming Language Design: State of the Art

Most higher level languages of the early 1960s did meet the "order of magnitude"
criterion when compared with machine language or even, in some cases, FORTRAN (e.g.
APL, SNOBOL and LISP for wide (disjoint) classes of problems)t. However, in the late
1960s and the early 1970s computer scientists began to focus on the fundamental
concepts underlying the activity of programming and the machines for which programs
are written,

I.  The stimulation of machine technology

The rapid pace of hardware innovations has certainly kept one group of
programming language designers active; machines such as the Star [HT] and ILLIAC IV
[BN] have features to Occupy designers in merely allowing the higher-level language
programmer to use the machine effectively. A related group of
designers--disenchanted with the inefficiencies of general purpose languages--have
resorted to lower-level machine-oriented implementation languages; languages such as
Pascal [WI] and Bliss [WU,1971] have in fact contributed to the field of higher-level
language design, although that was at most a subcrdinate goal in their design.

The technology has further stimulated programming efforts in systems concepts;
paging, networks, associative memories, protection systems, etc., have all caused existing
programming languages to be reexamined, especially to determine whether applicability
of the concepts should be discovered by compilers or extensions made to facilitate their
use directly, Real-time facilities, exotic new peripherals, "applications” systems, and
microprogramming are only beginning to influence programming language design--as
evidenced by recent interest in "two-dimensicnal languages”, for example [WM].
Despite activity in the technological areas, with the exception, of implementation
languages and graphics languages, the approach has been to extend existing languages,
rather than to invent new languages incorporating or anticipating hardware technology
in any fundamental way. It is more probable that we do ot understand the implications
of features like streaming and parallelism than that they will not L'lltimately affect the

tSee [BA,1957], [McCR], [IV], [PAK], [FGP), [GPP], and [McC].




INTRODUCTION AND APPROACH 3

heart of programming language design.
2. Formal and informal methodologies

Another group of programming language designers has begun to address the
problem of finding the fundamental underlying concepts of the activity of programming.
There are many approaches to this problem. Formal approaches include formal
semantics specifications for entire programming languages, program “schemata” studies,
program verification efforts, and various axiomatizations suitable for correctness proofs
for particular programs in specific languagest. Rigorous approaches to systems
programming problems--cooperating sequential processes and protection schemes, for
example--provide practical problems for which formal analysis is a tool of obvious and
immediate benefittt.

"Structured programming” presents a more empirical view of the activity of
programming; here the language design issue is primarily “can we use what we have?"
and only secondarily "how should we improve it?"i¥t. Even here the approach tends to
be mildly formal--properties preserved or destroyed by control constructs, for example,
are closely examined and the "correct" way to program is preferably the way which
may be proved correct. However, the formal approach is a means to an end:
enhancement of understandability, principally through enforcement of a hierarchical
programming style. Considerable practical experience has led theoretical computer
scientists to accept "gotoless programming" as an improved technique [DI,1968),
[WU,1971])  Also, featurcs for controlling the ill-structured properties of global
variables are emerging [WS].

A related issue is the management of large programming efforts--modularization a la
Parnas [PA]. Conventional decompositions of programming tasks tend to maximize
knowledge of the interfaces between components; a modularization which minimizes such
knowledge has been found to result in more easily modifiable systems. Unfortunately,
the decomposition is often orthogonal to that proposed by “structured programming"
enthusiasts.

tSee [AJS], (1A}, [CG], [SN], [KI} and [GR].
t+See [DI,May,1968], [HA], and [BH].

t++See [D1,1969], [HO], [WU], and [WS]

. o e i e e e T Tea— e .




INTRODUCTION AND APPROACH 4

Other management issues are att:cked by those interested in bootstrapping and
transportability #; the major impact of these issues on programming language design is to
cause more exact distinction between the fundamental features of a language and those
which are actually syntactically or interpretively extensible from the language core or
present for efficiency. Those interested in program management are approaching
language design from a fundamentalist viewpoint; we may expect at least the core of
future languages from this group to be very sparse, compact and logically consistent.

3. Maturity

Of course, it is unfair to divide programming language design exclusively into two
camps--technology and management. General purpose languages continue to be
designed and inplemented. However, many conputes scientists feel that large
"omnibus” languages such as Algol 68, PL/1 and Simula 67+% represent the end of the
large language era for several reasons:

1. They have stimulated enough problems in their implementation and
description to keep computer scientists busy simply trying to
understand them;

2. Experience with them is so limited that no one can propose
absolutely better solutions for the problems they pose; in particular,
meager evidence does not show an “order of magnitude” return for
the investment, either in size or complexity decrease;

and

3. There is a general hope among computer scientists that progiamming
languages need not be that complex.

Programming language design has also matured sighificantly since the early 1960s.
Algol 60 [NA] is no longer thought divine, but has rather entered the small group of
universally understood languages--along with FORTRAN, LISP, and SNOBOL. APL is
generally taken more seriously than previously, although its merits are far from

tSee [BR), [WA,1967,1970].

ttSee (vW,1969]), [IBM), and [DMN].
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universally recognized. Higher level languages have become viable alternatives to
assembly languages for systems problems.

e

Emphasis in the language design field has shifted fr
]

om the study of syntax and
compiler-compilers to '

'semantics”; the former studies have been subjugated to the

study of extensible languages, pursued by an active (though currently disillusioned)

group of designers [SCH]. Issues of scope, storage management, control structures and
data structures--although in

no sense resolved--are considerably better understood.
The new languages which have arisen from hardware technology or program

management studies have been treated in the literature with emphasis on the technical
Or management issues they consider.

In summary, those computer scientists in the mainstream of programming language
research are not designing programming languages.

Language Design: Trade between Technology and Formalism

General purpose programming language designers tend to emphasize either formal
or technological innovations in the languages they design; however, they cannot
satisfactorily rely wholly on either. The disparity between machine/system design and
formal axiomatization makes formal languages unusable from a practical standpoint.

Similarly, the often ad hoc nature of advances in machine des

sign, which are frequently
poorly matched with the systems and languages in which they are ultimately embedded,
makes a purely technological appr

oach unacceptable from a management viewpoint,

Certainly, a trend of the past decade is toward m
technological fields. In particular, formalis
Machines unless the emphasis is toward a
i.e., the emphasis is no longer a basis for
motivate the formal

utual trade between the formal and
ts no longer propose alternatives to Turing
more practical, realistic model of computing;
computablity. Computers, not computability,

approaches to problems such as assignment, data structure
axiomatizations, and (to some extent) complexity. Analogously,

have borrowed the mathematically precise notions embodied in
and set operations. "Structured programming” and systems
frequently proved correct, us
formal studies.

programming languages
association mechanisms

programming algorithms are
ing rigorous approaches previously found only in the more

The language basis developed below borrows extensively from both progamming
tanguages and formal applications. In searching for a powerful computation base,
applicative languages are found to provide a pointer-free representation for
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computation.  Without destroying this representation by in'roducing the troublesome
notions of "assignment" and "side-effects”, a sequence gencration mechanism is included
as an abstraction of the process which computers perform.  Although the notations
used appear formal, the treatment is not. The results are preser‘ed as fruitful
directions for the design of future programming languages, not as an attempt to
incorporate particular aspects of current hardware technology into a formal basis for
computation

Order of Magnitude Improvement

The “order of magnitude improvement™ criterion s intentionally vague; many
individual aspects of programming languages could be improved by a factor of ten
without a corresponding improvement in the overall task of designing, writing,
debugging, running, and modifying a program in the langauage. Possibly the only
precise definition of an order of magnitude improvement in general purpose
programming languages would be economic--in terms of the total cost of developing and
using a program, measured for a diversified group of programs and programmers over
an extended period of time, Certainly programming in the Improved language must
become m .re natural to a large group of programmers, and implementations of programs
must become more powerful.

Insisting that the implementation of a language be efficient on current machines
requires the definition to be relalively insensitive to hardware advances. This poses
two requi ements: (1) the language must be futuristic enough to predict machine
technology advances, lest it be obsolete immediately, and (2) it must not depend on
future technology for its acceptance. However, it is unlikely that a language meeting
the criterion could be developed which does not require at least some improvement in
optimization techniques for current machines; specialized languages such as APL and
SNOBOL which have (intuitively) met the criterion certainly require such advances for
acceptable implementation efficiency.  Hence, although we wish to constrain our
considerations of the order of magnitude criterion to language design as influenced by a
natural conceptualization of problems, implenientation considerations cannot be ignored.

*The criterion probably arose in response to the economic question. how much better
must a language be to warrent the vast implementation and programmer retraining costs
entailed by a new language? This initial overhead factor would be required in the
definition.

N
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Although we do not propose an exact definition of the order of magnitude
improvement criterion, it is clear that one economic effect must be that programming
must take less time than it does currently.

There are several approaches to decreasing the time required to program. Ignoring
the special-purpose language approach (we want a “general purpose” language), the
principal methods seem to hinge about the ability of a language to eliminate the
specification of "detail” that is necessarily specified in other programming languages.
Hence, for our purposes, we shall assume that a language in which programs neeJ
contain only one tenth of the detail that wculd be required in current languages,
represents an order of magnitude improvement in general purpose language design. At
least twu constraints are appropriate: (1) the new language must be implementable
approximately as efficiently as those against which it is compared, and (2) the gains in
concise specification of algorithms must not suffer from tne "write only language"
syndrome--complexity of interpretation of language constructs must not defeat gains in
conciseness. The principal effect of this latter constraint is to insure that programs are
not necessarily poorly structured. Below we present a discussion of language design

mechanisms for eliminating detail. Features will be presented as methods for
introducing conciseness; aspects which miti-ate against structure or efficiency will be
mentioned.

1. Conciseness

Higher level lanquage design may be viewed as an attempt to make programs more
concise while prescrving their structure. Note first that, although cuncise primitives
are desirable, a blind attempt to minimize the number of primitives involves some loss of
efficiency whenever the underlying model is more powerful than the language itself.
For example, if the successor function is the only mechanism for addition, any
implementation on a machine with addition as primitive will be inefficient.

One of the principal methods for reducing a program’s length is to eliminate or limit

the number and scope of "temporarily defined names” used by the programmer®. The

most prevalent mechanisms for achieving this end are the inclusion of operators in a

language and the ability to define functions. Both have the effect of making the

program more concise by eliminating the necessity to initialize a temporary name--e.g.

i a register--and then perform an operation on it--e.g. a machir2 code command. The
recent trend toward “"expression languages” is an extension of this notion; languages

tTraditionally the phrase "temporarily defined names" refers to internal names
. generated by a compiler. Here we mean names generated by the programmer for
temporary use.

s " o P — s o o




INTRODUCTION AND APPROACH 8

such as Gedanken, Euler, Bliss, Algol 68, etc.t, use the LISP noiion of associating a va'ue
with each construct in the language--including those normally thought of as control and
command constructs. Limitation of the accessibility of temporary names is the primary
motivation for hierarchical scope rules in programming languages. Such rules lessen the
bookkeeping required of the programmer by permitting identical names in different
contexts. In addition, they provide a minimal concession to the preference of natural
language for context dependent interpretation. Although the efficiency issues involved
are by no means trivial or completely solved, most programmers prefer the use of these
mechanisms with the slight loss of efficiency incurred.

Another method for reducing program size is to provide a large number of highly
specialized primitives in the language; the conciseness of APL is due in part to this
property of the language. Clearly, if for most programs one need define only one tenth
as many functions in one programming language as in another, the former represents an
order of magnitude improvement over the latter (for a fixed performance level),
particularly if their invocation is concise as with APL single character operators. One
can usually identify subsets of related primitives in languases where a large number are
available--for exarmple, subsets related to strings, arrays, boolean variables, etc.
Efficiency problems do not generally arise when constrained to theec: subsets.
However, some languages--PL/1 and Algol 68--allow implicit relationships among the
sublanguages defined by the subsets: one may add a boolean to a real number.
Although this is an aid to conciseness (explicit conversion calls are not necessary) it
increases the complexity of interpretation, and may cause a loss of efficiency.
Extensible language enthusiasts tend to downgrade this aspect of language design,
preferring a minimal "kernel" from which all extensions are rade. Although the "kernel"
notion is excellent as an aid to the description and davelopment of a large number of
primitives, the lack of a large number of primitives in the language itself has severe
implications to its implementation and its utility as a tool for communication.

A third method for gaining conciseness involves the reformulation of groups of
concepts in languages in natural or structured ways despite a mismatch in their
implementation. In some sense, sach higher-level language construct causes a local loss
of efficiency in implementation; those which are of most benefit frequently increase
knowledge required of the relationships among language elements for efficient
implementation even though the relationships are not recognized at the source language
level. Current optimization techniques are concerned with discovering these
relationships. The technology will be directed by such language efforts, although it has
not been significantly prodded by them in the past; i.e., programming language design

tSee [RE,1970], [WW], [WU,1971], and [vW,1969].
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tends to lag behind machines from fear of inefficient implementation on current
machines. Sadly, natural formulations in programming languages of techniques such as
streaming and microprogramming are not their raisons d’etre.

Fortunately, recent developments in structured programming (e.g. gotolessness)
and operating systems (eg. P and V synchronization) have emerged despite
inefficiency qualms (control structures were subsequently optimized and now no one
really worries about their inefficiency). Languages like SNOBOL and APL are
particularly noteworthy in that they have provided a conceptual framework for
constrained data structures. Their conciseness for problems over the class of data
structures for which they were designed is remarkable; their power derives from the
fact that detail related to implementation of the structures and operations on them is
subsumed in the implementation. That is, enough is known about the structures that an
acceptably efficient implementation can be built; the conciseness is often worth the
price of even poor implementations. Of course, these languages (in particular) lose
their leveraje when problems outside their respective realms are attempted. Although
inclusion of more sophisticated control constructs would have enhanced their
applicability, the scope of their power is limited by the inability of their conceptual
structures--strings and homogeneous arrays--to model many aspects of the structures
used in computing. Naturally, part of their power derives from the assumptions they
can make about these limitations.

2. Structure

Conciseness as an ultimate goal in language design has some limitations. Natural
languages in particular contain redundancies which emphasize linguistic structure--which
then render unnaturalness "apparent” as was mentioned above. Redundancy in
programming languages is minimal, although one might argue that ihe preference of
parenthesization to postfix notation in languages constitutes a concession to
redundancy. We are unable to propose any particularly effective methods for utilizing
redundancy in language design. However, a "structured decomposition” of a language,
and of the specifications of algorithms in the language, is considered desirable.

Inasmuch as "conciseness" has received considerable emphasis as a means for
meeting the order of magnitude criterion, its relationship to "structure” deserves some
attention. Reactions to APL "one-liners"t often leads (non-APL) programmers to believe

tThe "one-liners" are normally extremely complex, involve several APL operators, "just
fit" on one line, and accomplish tasks of considerable difficulty.
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that the ultimate in conciseness is incomprehensibility. Indeed, encoding techniques
more properly constitute the ultimate in conciseness, and may even have
incomprehensibility as their goal.

However, we claim that most APL "one-liners" are not sufficiently concise! The
principal grounds for such a claim lie in the fact that "structure” often aids conciseness
to the extent that once inside the context of a structured entity, the representation for
any particular effect is more concise than were the structure not present. For example,
the principal reason the APL one-liner is concise in the first place arises from the vast
structure of APL--in whose context the expression must be interpreted. The claim that
most APL one liners are not sufficiently concise is simply a claim that their programmers
have not found structural similarities between the one-liner and the other programs
they have written. That is, in the context of programming (over a period of time, as
opposed to writing a particular program), the one-liner is probably decomposable into
previously obtained effects which should have been factored from the expression as
functions. Certainly, when common effects can not conceivably be recognized--i.e.,
when generalization seems unlikely--we prefer a structursd decomposition of a
one-liner, while granting its superior conciseness.

In summary, we must find intrinsically powerful primitives whose relationships,
though  complex, provide sufficiently constrained assumptions for efficient
implementation, and which are amenable to change as well as concise description. In
the remainder of the thesis, a broader base for structures--nested sequences--is used.
We can therefore expect our assumptions to be less powerful than either of the above
languages allow. However the power gained by the naturalness of this structure to
machine computation should, in general, offset that lost by the less rigid assumptions,
and a more concise language for a wider class of problems will result.

Pointerless Representation
1. "Gotoless programming”

We begin by examining one recent technique developed by proponents of
structured programming--removal of the goto statement from programming languages.
Essentially, this removal involves the substitution of a "complete"t set of control
constructs for the goto. For example, the set might include subroutine call, selection,

t"Complete” in a pragmatic sense, more than mathematical. In particular, the set is in no
way computationally "minimal®,
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grouping, conditional, loop and escape facilities. Tre set mentioned is not complete in
the sense that every control structure oblaiiable with the goto can be simply
represented using these constructs; rather the philosophy imposed 15 that the
constructs point out those uses of the goto which are dangerously complex. In fact, the
set mentioned is not complete from another viewpoint: the forced representation of
certain useful, safe constructs 1s unjuly complex. (The coroutine, "enable” mechanism,
and “select” expression i Bliss represent concessions to this incompleteness
(WU,1972])  Gotoless language designers resist the urge to reintroduce the goto In
order to obtain suclh constructs, preferring to extend the set of gotoless constructs.

One of the principal benefits of gotoless languages arises from the effective removal
of explicit program pointers from the language (Ly constraining pointers lo particular
objects in a local context). While the programs wiich can be written in the language
are visibly less complex than in a language with gotos, the complexity of the underlying
structure discoverable by a compiler 1s actually increased. This increase 1s not simply
an amouni which would make the efficiency of potoless languages comensurate with
tanguages with the goto, but is actually a significant increase beyond that, arising from
the assumptions about language elements which gotolessness allows. Recent work in
code optimization by Geschke [GE] exploits this gain; recent work by Hansen [HAN]
indicates that such considerations need not lead to inefficiencies in the compilation
process,

2. Pointers in programs

An examination of programming languazes in general indicates that misuse of the
goto (this notion is now well-defined) is only symptomatic of problems introduced by
the use of pointers in programming Ianguages. In effect, gotolessness controls
program-to-program pointers; it says nothing about prograin-to-data and data-to-data
pointers, both of which present problems at least us romplax as those introduced by the
goto. The problems incurred are analogous to those of the goto; "unnaturally complex”
entities can be built easily by the programmer and consideration of these by the
compiler writer defeats real gains which could be made if they were controlled.

For the unconvinced, brief examples of problems incurred with both of the above
types of pointers may be enlightening. Program-to-data pointers--yes,
“variables"--incur problems primarily from the side effects of the assignment operator.
When a programmer calls a subroutine (procedure) he is often unaware of global
variables which may change as a result of the call; common subexpression optimization
facilities in a compiler are also thwarted by this phenomenon. In effect, both the
compiler and the programmer must assume that any global variable may have changed*.
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Scope mechanisms are inadequate here--they do not constrain the access to global

variables effectively. (This problem is currently being studied independently as a
“structured programming" problem (Ws])

It is a rare programmer who has not incurred problems with data-to-data pointers;
LISP programmers using "nconc”, “replaca”, and "replacd”, for example, create cyclic lists
unintentionally. This is not to say that notions like “cycle” should be foreign to data
structures, but rather that they should be explicit; knowlzdge of such structures may

then be utilized more cffectively by compilers and interpreters intended for the
language.

Data-to-program pointers are not as obviously misused as the other two types,
principally because of the extremely limited capabhilities generally provided for such
pointers. Naturally, switches in Algol inherit all the problems associated with gotos.
However, it will be shown below that tie notion of "partially instantiated function”
actually generalizes this notion of pointer, yet retains the control required; i.e., this is a
type of pointer which is not complex enough.

Any programming language with a reference concept is in one sense providing an
“assembly language" for data structures, without providing controlled alternatives for
expressing sequential relationships. Indeed we lack knowledge of such alternatives.
Those languages which do attempt to control pointers usually do so using type
structures (modes). Such facilities often prevent useful data structures from being

defined (for example, rings) or permit uncontrolled, arbitrarily complex structures to be
created.

This should not be misconstrued as an indictment of pointers in general; no one
would propose a gotoless language without the ability to define and reference
parameterized subroutines by name, which indeed does constitute a use of a program
pointer as well as data pointers. It is more the incompleteness of structuring
mechanisms for data with respect to pointers which magnifies the problem.

tIn a language without pointers, the compiler can determine information about which
variables can change over calls. Such a determination is directly analogous to internally
reformatting programs with gotos into the gotoless format for optimization purposes.

i
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3. Pointerless data representation

In order to remove the ahility to use explicit pointers in programs, we consider the
possiblity of using the gotoless constructs directly; ie, the hierarchical, nested
sequential ("embedded lists"), static structure of programs is examired as a base for
data structures. Indeed, such structures form the bas's of data structures for several
higher-level languages. The combination of sequential structures with the gotoless
sequencers is indeed richer than the static structures alone. For example, a loop is a
gotoless construct for programming languages whose analog in data structures is a
cycle--a structure which must be simulated or constructed in languages with the same
static structure base.

There are several problems which data structures present beyond those
encountered with programs themselves. In particular, a data structure frequently
requires that different sequential structures be mapped onto the same entity; the utility
of the concept of the "reverse" operator should illustrate this sufficiently, Also, data
structures tend to be dynamic; for example, insertion and deletion of elements are
operations appropriate to data structures. However, such problems with respect to
programs do exist and are beginning to be considered in "incremental compilation”
studies within conversational language research [MI].

Note also that the notion of data structure is analogous to program structure in the
following sense: although programmers define many different programs they are all
considered to be instances of the same program structure--usually described
syntactically by some formalism such as BNF. [t would appear that to define different
data structures requires, in effect, a specification language like BNF in the language.
That extensible language advocates often propose this for programming languages
suggests that such a mechanism should probably be a shared data structure and
program structure extensibility mechanism. It also suggests that a data structure
facility founded purely on a single syntax for data structures--as there is a single
syntax for a programming language--must be examined critically before proceeding to
extension mechanisms. To emphasize, just as gotoless language enthusiasts add new
gotoless ccastructs instead of resorting to the inclusion of the goto to obtain a
desirable effect, we prefer the definition of a new construct to provide the effect for
which the inclusion of explicit pointers might be proposed.

Languages rarely have a sequential data structuring mechanism; sequence in
languages like Algol is induced by the program in terms of an alternative data structure
mechanism, the array. Although sequential operators occur in APL, their presentation is
as a convenience for describing and restructuring the parallel structures which
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constitute the structure base. Languages which do offer sequences explicitly as data
structure units are the string languages--where concepts of sequentiality and
relationships of sequences are constrained to a single level, or else revert to the
pointer-chasing mechanisms of other languages, such as LISP. Some of the more
modern languages, like Pascal, while approaching adequate inclusion of controlling
statements for data structures, continue to represent the relationship between program
and data as controller (program) to controlled (data). In what follows, a much more
unified view will be established, and, in fact, the distinctions between program and data
become pleasantly "fuzzy".

4. Cosequential decomposition: program/data structure correlation

The correlation between data structure and program control structure has been
ignored to a large extent in programming language des'gn. An example from APL may
heip to illustrate the notion involved. In implementing

A+B+C

for conforming vectors A, B, and C in APL, a temporary vector, T, may be used in a loop
to compute T, = B; + C,. The expression’s value may be computed in a subsequent
loop over T; = A, + T, (an implementation which closely matches the semantic
description).  However, noticing that the result sequence of the first loop is
“cosequential” with the program sequence of the latter loop, the implementer 1s free to
merge the two loops into one, in which T; = A, + B, + C; is computed. In essence,
the loop is used to define a sequencer for the data structures (T, A, B and C) with which
the sequence of executions of the loop body is cosequential.

Although the APL programmer should be able to rely on such implementation
efficiency [AB), he may have doubts about an expression such as:

transpose (2, {rho A))rho (A + B), A - B
where loop incarnations of
(Tiyr=A; +B;T,2=A, -B)
would be the desired cosequential program elements. It is not necessary to understand

this example. The point is simply that a significantly complex APL expression may have
a relativeiy simple cosequential decomposition not likely to be discovered by a compiler.
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Even if a programmer recognizes program/data cosequentiality, in traditional
lanpuages he cannot specify the correspondence concisely. For example, many
programs produce result (data) sequences with which they are cosequential. The
following Algol program is such an example, producing the Fibonacci sequence in T:

begin
T(1]:=0; T[2] := };
for i := 3 step | until INFINITY
do T[i]:= T[i-1] + T[i-2};
end

Note that there is a program element (statement) execution corresponding to each value
in the result sequence. The correspondence is not apparent--the resulting data
structure is subordinate to the control structure of the program.

Although the above examples tend to indicate cosequencing of a somewhat trivial
form--with program loops--examples dealing with more complex structures are common.
Recursive functions implementing top-down and bottom-up tree-scans generally admit
identificaton of a recursive program control structure with a nested data structure (a
1-1 sequential mapping between recursion points and tree nodes). Once again, ir most
languages, the nested data structure is subordinate to the recursive control structure;
the sequencing for the data structure is explicit in the program statements themselves.

The extent to which cosequential relations exist in programs and the effect on the
programmer’s conceptualizaton of them is of primary interest in the language basis
developed below. The notions of “partially instantiated function” and “"sequence
generation" are found useful for emphasizing the cosequential relations mentioned
above. Hence, a short discussion of each is necessary before proceeding to particulars
of the basis.

The "partially instantiated function” is simply a function with only part of its actual
parameter list specified (bound). For example, if “a(i,j)" represents a function which
returrs the jth element of the ith row of some (implicit) array, "a(,2)" may be used to
represent the function "c2" defined by "c2(i) = a(i,2)". This ability to partially
instantiate functions--in this case to the second column of the array--has obvious
consequences with respect to program generality. For example, if a function "q(x)"
expects a vector argument, use of "g(a(,2))" eliminates the need to reprogram q to deal
with columns (or rows) of arrays.
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Partially instantiated functions are called "sections” in mathematical literature [RO],
and we adopt the term here for convenience. The nature of sections is ambiguous:
they are both program and data, and attempts to define them as one or the other rely
on a preconccived implementation, By themselves, sections do not aid the study of
cosequencing; Fowever, sequences of sections will be seen to represent a "middle
ground” between data structures and program structures, and constitute a large portion
of cosequential result sequences in programs 1 the basis.

5. Implicit sequence generation

The notion ¢ implic; "sequence generation" is also separate from cosequentiality,
but affects its utility tremendously. It arises principally from a desire to express
infinitet structures in programming languages as entities whicli can be dealt with
operationally.  For example, the Algol version of the Fibonacci sequence generation
given above never terminates, and hence does not constitute an algorithm.
Conceptually, humans are able to cope with such a sequence; we know that any actual
use of the Fibonacci <equence would require ils termination. Once again, in {raditional
languages, program generality is limited, because for each condition of termination of
the loop sequence, we nust write a separate version of the program which produces il.
Alternatives such as passing the termination condition as an argument to . .e procedure
for the Fibonacci sequence, or pulsing a function which always produces the next
Fibonacci element, are unacceptable--the conceptually clean notion of an infinite
sequence is dirtied by termination mechanisms from within. We are able to write the
function we want (as above), but cannot use it!

In the basis presented helow, the nation of implicit sequence generation permits the
definition and use of infinite sequences. They are terminated from "without"; i.e.,
boundecdness can be a property of the context of the use of a function, not necessarily
of the function itself. This ability is useful from a practical as well as the more
mathematical standpoint above. Input sequences to programs, operating system state
sequences, interrupt sequences, etc, are all realistic sequences which may never be
dealt with as sequences in programming languages, other than via explicit pulsing of
their generators. It will be seen that the coroutine mechanism required to implement
implicit sequence gencration represents the beginnings of efficient implementation for
(frequently inefficient) algorithm decompositions prescribed by structured programming
*We do not distinguish between (conceptually) “infinite" and (actually) "tinitely
unbounded"., When dealing with mathematical properties of programs, infinite is more
appropriate; when dealing with the algorithmic nature of the programs, the latter is
appropriate.
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studies.

Constraints: a language "basis”

The principal goal of this thesis is to present a programming langnage basis (the
direct analogy to a linear vector space basis is intended). In essence, orthogonal
elements of program representation are examined and mechanisms for relating them
presented. The dimension of our space is unknown when defining elements of
programming. At the very least, technology will add dimensions; at most new language
designers can expect only to define a subspace of programming languages. In one
sense, the language space is spanned by any computationally complete set of
programmning constructs. This is not of interest here. Rather, a language construct is
independent of a set of constructs according to some intuitive or explicit measure of
ditficulty of programming without the construct. For example, recursinn is a dimension
independent of those spanning the FORTRAN syntax.

Continuing the analogy to vector spaces, addition of a new dimension should require
reformulation of the existing basis to insure that basis elements remain orthogonal.
Orthogonality corresponds (again intuitively) to the optimal introduction of an
independent element, which certainly involves maximizing the independence of the
construct. This is in turn related to involution, conciseness and consistency. Indeed,
many languages are designed with a formal base of primitives--LISP 1.0 [McC), Pascal
[WI] and Algol 68 [vW,1969] are certainly such languages. However, once a language is
in wide use, in order to avoid reprogramming, independent constructs must be
reformulated in terms of the base language, instead of reviewing existing concepts in
terms of the addition. New constructs must be “tacked on" as consistently as possible,
and orthogonality is rarely achieved.

Partially to avoid this phenomenon, the basis for programming languages proposed
below is not viewed as complete. Any reformulation of the language elements to insure
consistency with aspects of language design is considered appropriate. Thus, the
distinction between a "basis”" and an extensible language “kernel” is intentional;
modifications to a language based on a kernel arise through extension, not reformulation
of the kernel itself. This concept of design methodology eliminates from the outset
attempts to incorporate the concepts into existing languages. We reiterate: it is
extremely difficult to continuously reformulate new bases of computation to include
orthogonal concepts in this manner (.e. reorienting dimensions to insure orthogonality
is difficult).
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However, the thesis is very optimistic; for a fixed performance level, an order of
magnitude improvement in general purpose higher-level languages for large classes of
problems is attainable. And this improvement will be gained in large part by
reconsiderations of our computing basis. Arguments are presented which indicate that
additions to and reformulations of the basis presented should accomplish this end.

Approach: a Sequential, Applicative Language Basis

In the discussion about sequences above, it was noted that the consequences of the
inclusion of pointers are particularly unmanagable when combined with "assignment" to
produce side-efects. Formal applicative languages (LISP [McC), lambda-calculus [CH))
do not suffer from this defect. The basis is therefore set in an applicative language
framewo:k. The store operator has been introduced in applicative languages (e.g., as in
Gedanken [RE,1970]) with the result that favorable properties of the applicative
language are losi. In a sense, side-effects ultimately appear in our langauage base in a
controlied manner--the assignment statement does not.

The applicative language chosen is not conventional, but rather based on operators
instead of functions. The expression is the fundamental unit of a program (it may
evaluate to a sequence), and cansists of a sequence of operators and operands, with
left-to-right precedence in evaluation. The choice of operators over functions is
significant from a syntactic and notational viewpoint, though both provide the temporary
name minimization aspects requisite to notational conciseness. The language is
typeless: types are implicit with the input format. A primitive operator definition
tacility is introduced, with scope rules unspecified. This has the effect of avoiding
scope "tricks," or rather postponing the decision of which tricks to prefer. Formal
~onsiderations are not of interest here, so arithmetic, re ational, and boolean operators
are considered primitive.

1. Homogenous sequences

We eliminate the ambiguities intrinsic in allowing the notation for a sequence to be
the same for programs and data--the former often prefer the value of their last
expression, instead of the entire computation sequence of the program as wvalue.
Aspects of data which differ from program sequences--including creation by algorithm,
and insertion and deletion of elements are then considered. There is considerable
flexibility in the basis here; the constructs are initially merely chosen to be consistent
with the operators described below. Alternative and possibly preferable formulations
can be made in this area.
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The gotoless constructs are then introduced as operators over any type of
Séquence--program, data or a combination. These consist of selection, cond tional, loop
and escape facilities. Careful examination has shown that two operations for combining
data and program sequences, in conjunction with the above language constructs, provide
a powerful basis for computations over homogenous sequences. (In a sense, only
applicative languages should be compared to this basis; however, real programming
languages are compared in order to determine the directions of further extensions to
the base as well as to examine the form of conventional structures and constructs in
terms of thz new base.)

The operators accomplishing this power are actually quite simple, and aspects of
them occur frequently in existing languages (which is why they were chosen). The
coapply operator--""--simply combines two sequences, one element at a time,
evaluating to a new sequence representing the combination. For example, if we have a
sequence of unary operators

<Uy U2 uz>
and a sequence of arguments

<a); ap; az>
then

<ay; az a3> . <uj; uy; uz>
is the sequence
<a) Uy a2 up; a3z uz>,

where "a; u;" is evaluated before "aisl Uis1".  When the operator sequence is a

repetition--<uy; uj; uy>--the more conventional concept of distributed operator should
be recognized.

The second operator actually embodies the notion of sequence. It is most easily

derived by examining the consequences of removing the assignment statement from a

traditional language such as Algol. Clearly, one realistic interpretation of a program is

then the sequence of values of each expression. The more traditional meaning is the

value of the last executed expression. In a language without the assignment statement

or escape facilities (return statement) this is always simply the last expression

. (preceding expressions need not be evaluated, for they can have no effect on any other
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expression in the same sequence). Inclusion of a return or escape operator merely
requires that the conditional of each such operator be examined sequentially; the
consequent of the first to escape is the only expression that requires evaluation.

Hence, a mechanism which establishes a relationship between a given element and
its predecessor must be provided. The accumulation operator--"/"-- accomplishes this
by producing a sequence, each element of which is a function of its predecessor. An
initial value must be given along with the sequence of functions to be applied. For
example, if "s" is the (left-unary) successor operator,
0/<s;s36>
<0s; 05s)s((0s)s)s>is

<ly 2 3>,

This operator s particularly related to the APL reduction operator--whose symbol ‘it
shares--and to the notion of regular automaton. Its name derives from the action of
machine instructions on an accumulator, which it simulates.

2. Non-homogeneous sequences: the "recursionless” constructs

The above considerations yield a langage basis which is quite concise for
homogeneous sequential  structures. However,  algorithms  dealing with
non-homogeneous structures are not nearly as succinctly expressible. Traditionally
such structures are best dealt with using recursion--either via recursive function calls
or a recursive data structuring facility, or both. The awkwardness of recursive
expressions using the sequential constructs leads us to the (obv ous) conclusion that
recursion is indeed orthogonal to strict sequentiality and fundamental to the facile
treatment of indefinitely nested sequences.

However, a recursive function definition facility never enters the basis (nor does
any equivalent, such as the LISP “label" facility). Instead ‘corecursive operators”,
analogous to cosequential operators (" and "/ above) fci recursive structures are
introduced. Program and data structures in v ich a one-to-one identification can be
made with recursion in the data structure and recursior in the program abound in
programming. For example, the correspondence between tree nodes and recursive
functions is quite obvious in "top-down" and "bottom-up" algorithms.

A LISP example will help to illustrate the concept®. The function "D" is defined
below for a list "L". The value of the function is simply a list similar to "L" with the
function "d" applied to each of its elements:




INTRODUCTION AND APPROACH

D(L] = [null[L] = NIL;
T = cons[ dfcar[L]}; D{cdr[L]]]}.

The non-trivial consequent in "D" i1s an expression with precisely the same structure as
"L", but with "d" applied to each element. In particular, each time "D" recurs, "L" nests
(its “cdr" is taken). Thus, the recursive structure “L" is corecursive with the recursive
structure of the function "D",

The LISP example illustrates an essentially sequential algoritam which should not
even be dealt with recursively. We develop operators which are able to deal with
considerably more complex recursive structures. In particular, recursive analogs to the
"" and "/" operators are developed which deal with quite general recursive evaluaticn
structures. We are lead to an analogy hetween the “"gotoless" constructs and
"recursionless” constructs: viz, recursion is implicit in the corecursive operators. Their
generality leads us to consider removing explict recursion from programming languages
and defining "recursionless” languages.

3. Cosequential decompasition and "coroutineless constructs”

Even with the "cosequential® and “corecursive" operators, the basis is unable to
express some algorithms well.  We should expect algorithms whose conceptualization
hinges on issues orthogonal to nested-sequences to present difficulties. These might,
for example, be algorithms in which parallel structures or random access mechanisms
are required. However, there are some algorithms which are clearly in the domain of 1
"nested-sequential” algor.thms, but which simply cannot be expressed well.

Partially as an effort to study such algorithms and partially to indicate how the
language basis can be implemented, we relax the "cosequential” assumptions about
programs and data and introduce "partial cosequentiality”. This ultimately leads to the
introduction of "coroutines” into the basis. The initial cosequential operators are found
to be easily implementable in terms of this more primitive control/selection mechanism.
Ultimately, we recognize the true nature of the "cosequential” and “corecursive"
operations as "coroutineless” constructs. Hence, in much the same manner as with the
goto and recursion, the coroutine facilities ultimately defined are presented only as a
low level mechanism to be used to define a richer set of "coroutineless" constructs.
That is, we advocate the removal of the explicit coroutine cail at a future date, but

s

*This example is too trivial to illustrate the actual corecursive operations of the basis; 1
this particular problem should never even be considered in a recursive context. In fact, |
"maplist" in LISP can be used to accomplish this effect; ie. this trivial form of ‘
corecursion has been recognized in LISP. %
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present it as a tool for studying extensions to the set of "coroutineless constructs”,

The remainder of this work deals with the material motivated in these last three
sections in considerably greater detail. In Chapter II the initial portion of the basis
dealing with strictly sequential effects is laid out. Recursive
considerations--"recursionlessness" and "corecursive operators" constitute Chapter IlI.
The coroutine as the fundamental mechanism involved in the implementation of the basis
is the subject of Chapter IV. In Chapter V, we draw conclusions about the significance
of the reformulation of programming that the basis entails, and indicate future directions
for its development.




CHAPTER I

THE INITIAL BASIS

Programming language design decisions are often involuted and interdependent.
Frequently a distributed set of decisions must be made in order to satisfy a single
language design criterion. This is particularly characteristic of a new language basis,
where each conventional language construct must be reexamined or reformulated.

As was indicated in Chapter I, the germinal decisior of this work is to control
pointers in higher-level languages by applying the gotoless constructs to
"nested-sequential” structures in general. At the outset only gains in expressiveness
were envisioned, gains analogous to those provided by the gotoless constructs in
traditional languages. In such languages, expressiveness benefits accrue from the
provision of a hierarchical decomposition to programs and the enlargement of the
common vocabulary for description of control beyond the primitive state represented by
the goto. In removing the pointer from languages, the only indication of potential gains
in efficient implementation--a language design criterion--is that the gotoless constructs
in languages do provide efficiency gains in the context of program control structures;
this must be weighed against the compelling reason for the inclusion of reference
variables in higher-level languages--namely, efficiency!

All decisions made in the design of the basis contribute toward an enhancement of
expression--concise representation. The decisions may be categorized as either
fundamental or syntactic. Fundamental decisions are of particular interest and will be
dealt with most thoroughly, particularly with regard to the design criteria of
expressiveness and efficiency. The studies of siructured programming and program
optimization provide concrete methodologies for determining whether a decision
satisfies these vague criteria. The nature of the language "basis" is such that
fundamental decisions should not be altered when designing a language from the basis;
syntactic decisions may be.

Although syntactic considerations are not considered paramount for development of
this basis, the principie of "involution” is adhered to, and an some sense, exaggerated
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by what we term "combinatorics”. “Involution" refers to the internal consistency of
language primitives with respect to the ways in which they combine and admit
substitution of other primitives. Expression languages illustrate the principle nicely, in
the sense that any expression in a program may be substituted syntactically for any
other expression, with only problems of variables’ scopes to be considered. Hence, if
computation A depends on the result of a computation B, the particular form of
computation B need not be known in an expression language to implement A. In a
statement language, A will depend on whether the result of B is from a loop, and, hence,
left in some temporary about which A must know, or whether it is from a function or
expression, and can be computed directly.

By combinatorics we mean the way in which primitives interact to form the "most
natural” result. Only recently have languages which use combinatoric notions
extensively come to popular consideration by the language design group at large, with
Backus® "Reduction Languages" [BA,1972], [CU] and the resurrection of Aiken’s "Dynamic
Algebra” [NO]. However, combinatoric aspects of almost any language can be discerned,
and a few examples may aid the reader in understanding this notion (which is admittedly
vague conceptually, though not formaily).

The LISP interpretation of non-NIL as the true condition in COND represents a
combinatoric decision. In SNOBOL, the ease with which a variable is assigned to the
portion of a pattern matched by an arbitrary string within the pattern may be construed
as a decision which aids SNOBOL’s combinatoric power. In Algol 60, the ability to have
an if=then statement is of similar utility. In particular, in LISP, the designers predicted:

(COND ((NONEMPTY X) E1) ((NONEMPTY Y) E2) ...)

(where NONEMPTY has the more traditional, strict T/NIL value) would be the most useful
form for the condition, and chose to allow:

(COND (X E1) (Y E2)...).

In SNOBOL, syntax for the pattern-element by pattern-element detachment of substrings
to obtain the matching arbitrary string is clearly less concise than that actually chosen

to accomplish the effect. And obviously, the repeated use of "else dummy := 0" in
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Algol--the alternative were there no if=then construct--is less concise and represents a
probable frequent use of the conditional.

To generalize, combinatoric decisions involve the elimination of some syntactic
constructs from a preconceived model, to favor the most frequent use of that syntax.
Hence, it is particularly related to the notion of “defaults" and tends to enhance
involution. In general, combinatoric effects must be considered in the design of
primitive constructs. The nature of combinatoric and involutionary decisions is such
that they may be described best after all constructs are known. Hence, in what follows,
frequent reference is made to "combinatoric reasons” for the particular format of a
primitive construct. The nature of these decisions will be presented after the entire
basis has been elaborated.

The basis described below is an "initial" basis, a "final" basis will be developed in
successive chapters. The presentation is not formal, but rather emphasizes the nature
of the decisions which produced the initial basis. As such, the description should be
viewed more as initial considerations toward a language design, rather than as a
language specification.

Fundamental Decisions in the Design of the Language Basis

The design of the basis is presented below under major headings which reflect the
fundamental decisions involved. First, the decision to use an applicative language is
examined. In order to establish a universe of discourse, the primitives are presented
next, although the fundamental decisions involved here are combinatoric in nature. The
gotoless constructs are then considered and introduced into the basis.

The cosequencing operators introduced in Chapter I are then considered, followed
by a discussion of the notion of sequence “generation”.  After rehashing the
cosequencing operators in light of sequence generation, the combinatoric decisions
involved in all of the major decisions are considered briefly.
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1. An applicative language

An applicative language ‘~amework is chosen principally for its tight control over
pointers and related concepts. This choice is a fundamental language design decision.
The equivalence property which makes such a language desirable from both a
structured programming point of view and an implementation (optimization) viewpoint is
simply: identical expressione ... the same static context have identical values. From an
optimization viewpoint, this permits multiply recurring common subexpressions to be
evaluated once, and for all but one instance to be replaced by a direct reference to the
contents of a cell containing the value

Structured programming is concerned with the control of relations which do not
remain invariant over an expression. In particular, if we characterize the execution of a
program by s effect on its environment--a dynamic description of the name/value
associations available to the program [RE,1972]--the effect of evaluating an expression
In applicative languages is simply to extend the environment of the caller. Hence, any
relations which fail to hold in the new environment are due solely to the "addition" of
the new value to the old environment, The impact of applicative languages to
structured prograrming lies in the localization of the dynamic effects to the
environment of evaluating a function application.

Naturally, applicative languages are no panacea to these two studies. It is often
extremely difficult to optimize functions in applicative languages to a point comparable
with corresponding algorithms for sequential languages. This difficulty arises in part
from the complexity of “untangling” the control/data space when dealing with recursive
structures of some complexity (see Chapter III). Additionally, even though an iterative
algorithm may be derived from a recursive specification, a creative "leap" to a more
efficient algorithm may be masked by the recursive structure, even though it is quite
clear from the sequential specification (see example at the end of this chapter).
Structured programming benefits from sequential languages to the extent that invariant
relations may be found over environments which do change drastically. The inclusion of
sequential constructs in the basis will permit use of positive aspects of both sequential
and applicative languages.
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An operator version of an applicative language is chosen principally for notational
convenience arising from both combinatoric and operand-evaluation-sequence
considerations, which are best described after definition of the basis. The operator
notation, which allows nullary, left-unary, right-unary and binary operators, is also more
general than a functional notation. In particular, given the ability to pass sequences as
operands, left- and right-unary operators may be extended to pre- and post-fix
functions, respectively, simply by providing a matching mechanism for the parameter
sequences at the function definition site. Also, although a left-to-right expression
parse/evaluation order is chosen, a more elaborate precedence structure may be
applied when operator relationships are better understood. Hence, the operator
notation is chosen initially simply because of the flexibility it admits.

The metalinguistic operator definition notation used is as follows:

Left-Formal Op-Name Right-Formal :: Defining-Expression;

Left-Formal Op-Name it Definirg-Expression;
none Op-Name Right-Formal :: Defining-Expression; (1]
Op-Name i Defining-Expression;

corresponding to binary, right-unary, left-unary and nullary operators, respectively.
For example, a right-unary identity function may be expressed:

x id : x [2]
A binary identity function which ignores its left-operand and returns its right, is:
x ridy &y (3]

The “reserved word"#% or "token” none resolves the ambiguity of two consecutive
names in unary operator definitions.

tOperator and formal names are any combination of decimal digits and upper or lower
case alphabetic characters; sequences of special characters are also permitted as
operator names (see Chapter I1]).
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Use of an operator name in its defining expression does not constitute a recursive
call, but rather refers to the previously defined operator of the same name (which this
overridcs).  This standard extensible language interpretation is chosen to permit
redefinition of functions, a useful device in the presentation below. Operator definition
is initialiy “metalinguistic" to avoid scope considerations; an operator definition facility
must enter the basis at a later time.

A left-to-right expression parse is chosen over a more elaborate precedence
scheme as a concession to inexperience with the unusual operators of the basis.
Atthough, in fact, a reasonable precedence could be proposed, its presence would cloud
the presentation of the basis. The choice of a left-to-right scheme over APt’s
right-to-left scheme is primarily to remain consistent with the accumulate operator (see
below); the nature of "generation” precludes its right-to-left evaluation.

2.  Primitives

We are not overly concerned with the particular primitive operand and operator
types of the language. However, we assume a “"typeless" language (like APL) for the
generality it provides; we may define operators which apply to different types of
operands, depending only on primitive relations defined on the types. Hence, it is
probably more accurate to state that the types of a language developed from this basis
should involve sets of relations or functions defined over what are more tradit onally
thought of as types. For example, in a “"typeless" language, the function

min(a,b) = if a < b then a else b

has meaning only if the relation "<" has a boolean interpretation for the pair (a,b). This
is the case for any combination of real and integer variables in Algol. A typed language
+In a language developed from this basis, reserved words should be present in the
initial symbol table, and the ability to override their defirition provided. This is the
preferred extensible language interpretation [RE,1971].
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would insist that four separate functions be defined to cover all cases of this
expression. Subsequent definitions in terms of "min"--e.g.,

g(a,b) = a +~ min(a,b)
--also require four definitions; the loss of generality can be exponential in the number

of distinct types. Hence, the basis is typeless. (The combinatoric implications of
typelessness are addressed below.)

The operand types initially present in the basis are

Type Examples Generic-Variables*
1. Possibly Negative
Integer (PNI) 1, 36, ~125 i,jsk,m,n
2. Character oy B, T ¢,d
3. Sequence <ely; ely; ...; elp> S,p
4. String "b+"" TRY
E<"b"; ll+ll; llllllll> |
] L
5. The Empty Element nil.
We leave the description of sequence elements unspecified here, but, of course, allow

any instance of an operand type. In particular, the ability to nest sequences is
primitive. (The generic variable “t" will be used when dealing specifically with
nested-sequences--see Chapter IIl.) A distinct unary minus, "~", i« adopted here for a
reason which will become apparent under the discussion of "section” below.

tThese names will be used in examples throughout the text.
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The arithmetic operators--+,-,muldiv, and mod--are primitive operators with results
of type PNI defined only on operands of type PNI.

The relationals--le,ge,It,gt,=, and ne--are defined over pairs of PNIs and over pairs
of characters (the colating sequence is presently left undefined)¥. The definition of
relationals, however, is not traditional. 1If "r2|" is a relational, then "a rel b" has the
value "a" if the relation holds, nil otherwise. The important decision here is

combinatoric in nature; it is important that one of the operands be chosen as the value
of a true relation.

A unique primitive operation which produces primitive operators is also permitted;
this operation is termed "partial instantiation”. The "section" or "partially instantiated
function” was motivated in Chapter 1 as a natural mechanism for expressing data
structure concepts of restriction. In fact, they p'ay a much more significant role in the
basis in that many prograrms are sequences of partially instantiated functions. In
particular, we allow the partial instantiation of any binary operator to produce either a
left- or right-unary operator. For example,

x(-3)=zx -G

(A mud) y =4 muly;

uminus ;;: O-;

uminus 3 = (0-) 3 = (0-3) = ~3,

As an aid to involution, we extend partial instantiation to include any expression missing
an operand on the left or right:

X (-5 mul 3) = (x-5) mul 3
(4+(3 mul)) y = 4 + (3 mul y)

The parenthesization of the operator expression is preserved, as indicated in the
second example. The ability to instantiate is uniformly allowed with any binary
operator, including those defined in the metalanguage. In general, operators are
Tt is convenient to have the relationals and arithmetic operators defined also on nil, but

motivation for the particular choice must be delayed until after the "conditional
operators" have been set forth.
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permitted as sequence elements. (A more precise formulation of the rules of

composition and instantiation appears in Appendix 1)

3. Gotoless constructs

Application of the potoless constructs to nested-sequential structures represents
the second "fundamental decision” toward the design of the basis. The particular
constructs of interest here are: subroutine call, grouping, selection, conditionals, looping
facilities and escape mechanisms. As has been stated previously the single property
preserved by the gotoless constructs is program hierarchical decomposition. The
impact of this property to structured programming and optimization studies arises from
the ability to identify non-primitive program elements which have a single predecessor.

From a structured prograrming viewpoint, properties (relations on the environment)

preserved or destroyed over program element execution are of interest. Gololess
1 constructs allow element identification to include larger elements than single program
statements. The gotoless constructs present a single predecessor to each program
element other than subroutines and loop bodies. The relations considered for any
given program element are localized to consequents of those holding after the
predecessor’s execution. The predecessor may be hierarchical, as in the case of
selector to selection and boolean to conditional, or sequential as in the case of grouped
elements. Loops are given hierarchical dependency on the negation of relations implied
by the termination condition. Hence, with the exception of the subroutine call,

consideration of predecessor relations is a linear process in a gotoless language,

whereas, inclusion of the goto potentially requires exponential considerations.

Optimization considerations often center about equivalence relations preserved on
environments; hence, any localization of the considerations of these relations aids
efficient implementation.  Any structured programming efforts which localize
considerations of arbitrary relations on the environment will usually localize
considerations of equivalence relations as wel!, and hence aid efficient implementation!

This is borne out in Geschke’s thesis on omptimization [GE].

The gotoless constructs enter the basis as operators. This is simply for
consistency with the rest of the basis and has extreme combinatoric significance. It will
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be seen that some of the operators are more of the nature of applicative language
"forms", in that they allow operators as operands. However, consideration of them as
operators is useful presently.

The first gotoless construct to be considered--selection--arises in part from an
ambiguity introduced in allowing both programs and data as sequences. In allowing
Programs as sequences and sequential values, we have a notational choice: we can
distinguish between program and data sequences by distinct bracketing pairs, or not.

We choose not to make the distinction; ie, type sequence above may contain
program (operator) or data elements. This allows the flexibility of operating on
programs as we do on data, without an additional conversion mechanism. However, this
decision immediately presents an ambiguous interpretation for a pragram sequence in
light of the recent sequential language interpretation of its value as the last program
element executed [RE,1970], [WU,1971). For example, if

beginej; ez .. ;e, end

is a compound in an Algol-like expression language, where the "e," are expressions and
none escapes, we may choose to interpret it as representing

<ej; €2; ..; ep>
or
€n

(the traditional interpretation). The sequential interpretation is chosen. If the last
value is desired, an explicit operator--val--must be applied.

<ej; e2; ..; ep> val =z e,

In a sense, the val operator is the only form of selection in the basis, although only the
last element of a sequence is ever selected by it. Although the select operator,
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s sub i = s (the ith element of s) [4]
whci 1 is in the range [1, length of s]

nil otherwise,

will be used frequently, it will later be demonstrated that the operator is derivable from
the initial basis.

The ability to derive operators from the basis is considered important in the context
of extensibility; i.e., although inclusion of a large number of primitive operations in a
language is desirable (see Chapter 1), a layered description of such operations is
considered invaluable to urderstanding the language. Additionally, criteria for entry to
the basis of extensible operators should be developed; in particular, sub would enter
the basis for implementation reasons, to be described later.

A second ambiguity arises when we consider interpretation of nested sequences in
higher-level-languages. Again, if

begin e; begin ez; e3 end; e4 end

is a compound, we can choose either of:

<ej; €2; €3; €4

(the actual program interpretation sequence) or

<ej; <ep; €3>; €4>.

The latter is chosen to include the gotoless construct for grouping as the already
present sequence brackets. To obtain the former interpretation, the gen operator must

be applied to the subsequence whose elements form a continuation of the
supersequence:

<ej; <ep; e3> gen; e4> = <ejy; e2; e3; e4>.
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For example, we may write a concatenate function:

S conc p i <s gen; p gen> [5]

= <S15.52 i Sni P13 P2} - Pn>

Notice that gen only applies to the sequence which s its argument, and not to its
argument’s subsequences; i.e.,

<1> conc <2; <3;4>; 5> = <<]> gen; <2; <3;4>; 5> gen>
= <]; 2; <B;4>; 5>,

Note also, if s is a sequence,

“s gen> = 5, and hence, <<> gen> = <>,

A third group of gotoless constructs, the conditionals, may be thought of as
"sequential booleans" In order to express the conventional if-then-else control
construct operationally, then and else operators are derived. Again for combinatoric
reasons, the LISP boolean is used; in any context where a boolean occurs, the criterion
for validity is that the result be a primitive other than nil. This s consistent with the
relational operators described above.  Additionally, any operation which would
traditionally produce a boolean result must produce a non-empty element or nil. The
choice of this non-empty value distinguishes the conditional operator definitions:

x elsey zy when x is empty,

£ x otherwise;

x theny = y when x is non-empty,
£ nil otherwise.

Unlike LISP, no value "T" for true is part of the language. If we consider boolean
functions over the set [true, nil}, where we define "trye" as any non-empty wvalue
(e.g. 1) the following definitions are apparent:

e b
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or : else

However, there is no way to construct the "not"” connective in this context. This is
indicative of a failure in completeness of our gotoless constructs: there is no
combination of else and then which evaluates to "y" precisely when "x" is empty in "x
conditicnal y". \We could include a "not" function in the basis as having some random
non-empty value. However, the basis is biased towards use of non-empty results of
conditionals as expression values, and we would most frequently use "not x then"
Thus, the excludes operator is defined to permit this effect:

x excludes y = y when x is empty,
= nil, otherwise.

With this we can complete our boolean repertoire, by defining:
nonet not x :: x excludes true.

(Only the conditionals else and excludes are necessary., For a more complete
description of the somewhat strange ramifications of this logic system, see Appendix 11.)

A fourth gotoless construct is the loop; unlike other languages, a set of terminating
facilities are not presented implicit with the looping construct. The loop operator, “+"
(the "Kleene star”), continuously replicates its argument until terminated implicitly, or by
using the escape operators:

X ¥ = <x; Xj X ...~

In one sense, this operator is taken from data structure specification, where use of a
pointer to implement a cycle is common. Naturally, the interpreting program normally
must impose the interpretation as a cycle, and must terminate such an interpretation
explicitly. For example, a function which produces alternately its left and right
argument is:

tSee [1] above.
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x alternate n<x; y> gen ¥ (6]
= <<xy> gen; <x;y> gen; ..>

G Y X Y e

The choice not to require explicit termination mechanisms was made in the hope that
frequently the termination condition can be implicit to the usage context of the
non-terminating sequence. As discussed in Chapter I (and also below), termination of
generated sequences is factored as not intrinsic to loops per se, but rather to
generated sequences independent of the generating mechanism. For example, we might
choose to define operations on a rational number representation formed by:

urat v i uconct (v gen x)

= <u gen; v gen ¥ gen>

= <u gen; <v gen; v gen; ..> gen>

2 <UL U2 i Uni VI o3 Vi V13 v} Vi o>

8.g., 3.7 rat "238"¢ "3,7232323."

For some operations, the decision to terminate sequences thus formed will not be based
on properties of the repeated digits, but on precision considerations; i.e., the termination
is not a property of the loop, but rather of the context of the sequence generation. It
is worthy of note that the same functions may then be used on szquences generated by
irrational number generators; i.e., the complications of termination are localized to the

use of the generated sequences, not to the various generation mechanisms for the
sequential arguments,

Explicit termination of sequences is accomplished with the use of the escape
(gotoless) operators, exs and txs. The former--exs, "else exit sequence"~-exits the
innermost sequence in which it is embedded when its operand is empty; otherwise, its

value is its argument. When the decision to exit is made, the empty element does not
contribute to the resulting sequence; e.g.,

+See [5] and also Appendix Il for useful functions defined in the text.
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<l; 2=2 exs; 2=3 exs; 4> = <|; 2 exs; nil exs; 4>
= <]; 2>,

This intuitively corresponds to the "while-do” control construct of several higher level
languages.

“Then exit sequence”, ixs, exits the innermost sequence in which it is embedded
when its operand is non-empty; its value is nil when its argument is nil.  Unlike exs, the
argument causing the sequence to be exited with txs is included in the result; eg.,

<l; 2=3 txs; 2=2 txs; 4> = <]; nil txs; 2 txs; 4>

= <]; nil; 2>.

The intuitive correspondence with othe languages here is with "do-untii®, a traditional
search mechanism.

N.B. Although generation and factored termination represent a fundamental design
decision, the explicit gains are best presented following the discussion of the
cosequencing operators.

4. Cosequencing operators

To this point the language basis is not "computationally complete”. We have no
recursive function definition capability, and aithough tre loop operator, "s", is present,
there is no way to relate successive elements of a loop. Before we introduce the
necessary operators, notice that the basis includes:

An operator language with a left-to-right expression parse;

A metalinguistic operator definition notation;

Primitive types: PNI, character, sequence, string and empty element;
Primitive arithmetic ard relational operators;

The gen operator (form);

oL C e S MR

The gotoless operators: conditionals (then, else and excludes), selection (sub

*"), and escapes (exs and txs).

and val), loop (
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Formalists will note an ambiguity in the interpretation of applications of "+" and gen.
For example, although the form "+(mul 3)" is disallowed as an instance of operator
composition, the similar form "+ %" is permitted (cach is a binary operator followed by a
right-unary operator). One can either envision a set of quote rules, permitting the
application of some operators to other operators, an elaborate precedence formulation,
or a notion of "form" in the lambda-calculus sense, to resolve the conflicts (see also
Appendix [). Presently we rely ¢ on guidad by derivations presented.

In Chapter 1 the coapply and accumulate operators were presented as means for
relating programs with their arguments and results. In particular, both operators are
forms of "apply" functions--or more accurately, "application generators"--in that they
relate a program sequence positionally with a esult sequence. The coapply operator,

", additionally relates its argument sequence with its function sequence:

(2

9 = <s)1 415 52 42; ..>

Goeneration of this sequence terminates with the shorter sequence, iff one argument
sequence terminates.

In combination with a loop the conventional distributed operator concept is realized,
for example:

5. (+1 %) =5 . <4];+];.>

= <5 +1; 504]; .0,

More exotic sequences can be expressed easily:

s. (+ alternatet -)zs. (<+; -> gen %)

"

$o KNP

m

Y514 827 534 S4-5 >

*See 6] for definition.
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(Appendix 11l contains a list of all functions whose previous definition in the text are
reused further along in the development of the basis.) The alternate "program” may

then be used to express more complex data sequences, for example:

s . (+ alternate =) . (1 %)

= <sp+l;s0-15 834 6415 >

This instance of section sequence construction illustrates a frequent use of the coapply

operator: to create function sequences with potentially complex components; i.e.,
programs, '

The coapply operator is also used for controlling sequence generation. For
example, a function which produces a "header sequence” of g--a sequence consisting of
inttial elements of q in the same order--the same length as another sequence s is:

s controls q = s . (rid? ) . g; (7]
& <g) ridi ep rids ... 8y ridr .
s <s) rid Q35 s rid qp; .. ; S, rid gu>;
2<qp Q.. 5 Qn”

(when n = length s le (iength q)).

Note that the notion of sequence invalved here is somewhat trivial; the only truly
sequential relationship (as opposed to positionally parallel relationship) of the function

(program) sequencer with its data sequence concerns termination. For example,
consider the operator:

srpluspis. (+%). p;
= <5) +py1; S2 + P2 >

"rplus" approximates the APL addition operator on two row vectors. However, there is
a subtle difference between this operator and the corresponding APL operator. The
implicit finiteness of sequences p and q in APL permits "pregeneration” of p and q, and

*See [3] for definition.
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computation in parallel of parwise sums, given a sufficient number of adders on the
interpreting machine. The basis does not presume finiteness, and an implementation
cannot (in general) pregenerate p and q; a sufficient number of adders cannot be
guaranteed to exist. Thus, if we consider it a property of parallel operations that they
terminate, the basis does not admit a paralle! implementation.

More crucial to the non-parallel implementation of the coapply operator are the
escape facilities. Consider the operator:

s nonempty 1 s . (exs %)
2 <5) exs; s exs; ..> = <s; §9; ...; 5>
where "s;" are nonempty in the range [1,n], and n is the length of s or Snel 1S empty.
Here, the parallel pairwise application of the sequence «+ =ents is alsu inadmissable;
one cannot determine the operand lengths required until after the result is produced.

Despite the necessarily sequential nature of the coapply operator, the nature of the
sequentiality is trivial. No result element depends on its predecessor’s value.
Traditional sequential languages are sequential for the same reason: statement si

modifies the environment in some wey on which statement s;,; may functionally
depend.

The accumulate operator, » introduces this dependency and represents a

constrained form of assignment. It is defined for an arbitrary initial value, y, and a
sequence, s:

Y [ s =<y splys)) sy ((y sy)s) sz ..

Generation of the sequence terminates when and only when s terminates.

One interpretation of this operator is as the execution sequence of a program on a
single~-register machine (which has no store operation). The interpretation is not quite
appropriate for the register may contain an arbitrary sequence, if desired. The

program sequence can, however, have a1 complex control structure. For example, the
Algol program:
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begin
real a; integer i;
ar=3;i:=0;
fori:=i+ ] whilea<9
do a:= ax b[i)

if a < 13 then a := sin(z) else a := cos(z);
end

can be represented as:

3/ <mulx. b. (It 9exs*) gen
(1t 13 then sin else cos) z>

"n

3 / <<mul by 1t 9 exs; mul by It 9 exs;..> gen;
(it 13 then sin else cos) z>
<3 mul by; ... ;3 mul by mul.. mul by

3 mul by mul ... mul b, (It 13 then sin else cos) z>

where accumulated product is less than 9. (The example is only intended to indicate
similar complex control structures; however, the final value of the Algol variable "a" will
be the same as the val of the latter expression above.)

However, this neither reflects the nature of most programs written in the basis, nor
of those written in Algol. Although the successive values of the accumulator may be
looked upon as the access sequence for an assignable variable, this sequence is
traditionally distributed throughout programs. Here it is not, and, indeed, a
reorientation of programming style must occur. The access sequence and the
controlling sequence are now equally important.

This completes the initial basis and we are now in a position to exhibit more realistic
functions. For example, the positive integers, P, may be represented:

P O/(+1%); [8]
2 0/ <+]; +1; .
2 <0+1; O+1+1; O+1+141; .5
E<]|1 25 8; o>
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This is the first example of a useful non-terminating function. In particular, it is clearly
beneficial to be able to express infinite sequences in programming languages. Many
mathematical formulations rely on such expressions: rational and irrational numbers,
infinite series, etc. Obviously, from a programming standpoint, such a function can
never be “executed" (control may not transfer to it expecting a return); in fact, it can
never be used in its entirety. It is the ability to exprecs non-terminating sequences
which leads to the “generative" implementation discussed below. In effect, each
| seqguence expression is considered to be a generator, an instance of which may be
"pulsed” to produce elements when needed.

It is the accuraulate operator which gives utility to the escape operators. For
example, the function:

s while f & s . (f exs #) (9]

Is trivial if s is not produced using an accumulation (cr as input to the program), for no
non-trivial relationship of the elements of s may be established without it. In
combination with the accumulation of positive integers, we may produce the first n
positive integers:

n pos : P¥ while ( le n) [10]
<llenexs;2lenexs;.. :nlen exs

(n+1) le n exs; ...>;

= <] exs; 2 exs; .. ;n exs; nil exs;..>;

<l 20 = 3R>

m

It is now an easy matter to illustrate that sub need not be a primitive operator; the
"head"” function is defined which produces the sequence consisting of the first n
elements of the sequence s:

n head s :: n gt O then (n pos controlsit s) else <> [11]

T1See [8] for definition.
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] The sub function simply selects the last element of this sequence:

s sub i 21 head s val.

b which will be nil when “i" exceeds the length of "s", and otherwise, the “ith" element.

In fact, this is not an accurate representation of the sub function. The “"controls"”
function as defined above presumes that the length of the controlled sequence is at
least as long as the controlling sequence. Boundary conditions generally introduce
complexity in programming language definitions, especially when extending languages.
(User-defined functions need not be "general” when the particular case of interest is
known to have certain properties.)

In order to define a new “controls" function which behaves suitably for the sub
function, the initial functions defined on the empty sequence are considered:

<> val = nil;

<>, g=zg, <>z

y/<>§<>;

<<> gen> = <>,
Otherwise, the empty sequence acts as any other sequence; e.g.,
<> then | = |.

The case in point--"controle"--has an erroneous value when its boundary conditions
are not met. For example,

<1; 2> controls <4>

s<l; 2>, (rids). <4>

+See [7] for definition,

- .




THE INITIAL BASIS

<l rid; 2 rid>. <4>
=<l rid 4>

E (4)_

Although this may be a reasonable interpretation for the value of “controls", alternative
interpretations are equally reasonable. To illustrate, the value could be nil when the
condition is not met:

s length :: s controlst P+ val else 0;

s controls q :: s length It (g length) excludes (s controlst q).

However, the new function precludes controlling infinite sequences. In particular, the

length function could not now be defined as it is above (in terms of the new "controls™).

We can, of course, define a function which has the value “s" when its length exceeds
a particular number:

s controls g izs . (rid ¥). q;
s lengthge i :: i posi¥t controls s length = i then s;
s controls q :: s controls (g lengthge (s length)).

The function will be in error when the condition is not met.

The interpretation chosen, however, which preserves the potential unboundedness

q" is to consider the controlled sequence always ‘infinite". In particular, the
sequence is augmented by an infinite cycle of nils:

of

See [7] for definition,

t+See [8] for definition.

ti+See [10] for definition.
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s controls g ::s. (rid x). (q conct (nil ¥)).
This interpretation gives the appropriate value for subt+ as clefined above.
5. Sequence generation

"Sequence generation" may now be made more precise, and the fundamental nature
of the language design decision it represents rore fully considered. No sequence is
ever generated--evaluated, produced--unless it i. necessary, by virtue of its
requirement as the value of a program, or in the computation of a value in the program.
When produced, only the successive elements needed are generated. For example, in

the "n pos” [10] function, neither "le n exs" nor "P" need (or could!) ever be generated
in their entirety before the coapplication occurs. Only the portions needed before the
result terminates are necessarily generated. Also, this termination may not need to

occur; in:

<3; 25> controls (999 pos) = <|; 2>
only two elements from "999 pos" need ever be generated. The implementation
techniques developed by Abrams for APL [AB]--"beating" and "dragging"--are essential

to the implementation of this basis.

The traditional notion of generator may be used to illustrate how this could be
implemented. A generator for a sequence consists of a set of own variables unique to

each instance of the generator, an initialization function, and a function for pulsing the

generator. The pulsed function returns the successive elements of the sequence
generated--one per pulse. The generator may, of course, run out of elements; the
pulse function must ndicate termination, and its caller must check for the condition.

TSee [b] for definition,

+See [4] for definition.
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Evaluation of a program in the basis can be thought of as a sequence of calls on
generators. A generator for the loop operator is trivial; an own variable is initialized to
the loop operand; the pulse function always returns it as its value. The coapply
generator initializes each of its constituent operand generators (preserved in own
variables); its pulse function is the application of the results of pulsing its constitutent
operand generators (after checking for termination). The accumulate generator
initializes one own variable to the initial value of the accumulator; pulsing consists of
setting the accumulator own to the application of the accumulator with the result of
Pulsing its operand sequence generator (after checking for termination).

Unfortunately, although generators are used frequently in programs, only languages
which include the more general control structure "coroutine" can be used to describe
the generators in any clean way.  The ‘“universally understood" languages LISP,
FORTRAN, Algol, APL, and SNOBOL are poorly designed for the expression of such
structures. Even SIMULA [DN], which allows coroutines through "activities", cannot be
used well to describe the generators for the basis because of its type structure. A
further discussion of implementation considerations is left until Chapter V.

The implications of generation in terms of the design criteria of naturalness and
power revolve about the programmer’s conceptualization of a task s, its
implementation. "Structured programs” have the property that they are hierarchically
decomposable. Frequently, this gives rise to implementations incorporating "passes"
over the data: an entire sequence is processed by a function producing a result
sequence, which is passed on to the next function, elc., until the output sequence is
finally produced. The notion of generation preserves this structured decomposition but
atlows it to include unbounded input and result sequences.

When implementing a program designed in passes over successive results, the
tendency is to attempt to “collapse” the passes; “single pass” compiler considerations
have become trite. In fact, the gencrative mechanism, and its coroutine implementation,
are generally recognized as the efficient way to implement structured programs. The
orthogonality between "structured programming” and “efficient programminc” is at the
heart of the "modularization" problem [PA] and is partially solved by the generative
notion involved in the basis. We reiterate: programs may be hierarchically structured in
passes, but the generative mechanism requires a coroutine implementation, automatically

collapsing passes where possible.
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6. Cosequencing

The fourth fundamental decision--to include the cosequencing operators "." and
"["--may be viewed as a combinatoric decision. The operators do combine data and
programs to produce new data or programs, and are similar to the combinators in
Backus’ Red 3 language [BA,1972] Such operators are significant to program
expressiveness: in a very real sense, programmers do identify program elements with
data elements and build control structures around them. This activity is generally
masked by the subordination of data sequencing facilities to control sequencing facilities
in most programming languages. Recently developed languages such as QA4 [RU] and
PLANNER [HE] allow some identification of program elements with data elements, but
then "hide" the data structure in a global data base. The use of set generative features
in languages such as SETL [SC] also represents a limited form of program/data element
identification. The use of generators in IPL-V [NE] permits cosequential identification;
however, it shares the problems of LISP in that the generators have to be explicitly
pulsed and produce results explicitly by "outputting" the generated elements. Thus, the
cosequencing notions are at least skirted by extant languages as worthwhile
programming features, not simply as combinatoric "tricks". The extent to which
cosequencing operators may be developed for less homogeneous structures is the
central subject of the remainder of this work,

7. Combinatorics

The decision to use combinatoric mechanisms is regarded as fundamental. Each of
the primitive forms will ultimately influznce the other’s definition by how they interact
in combination. As an example of such interaction note the effect of the decision to use
a left-to-right evaluation sequence in combination with the accumulate operator. The
accumulate operator must evaluate left-to-right, inasmuch as there is no rightmost
element of an accumulation before its execution. Had we used a right-to-left evaluation
scheme, the operation would have been entirely counterintuitive,

Combinatoric decisions influence and motivate the definitions of the relational and
arithmetic operators. It was mentioned above that such definitions should be extended
to include nil in their domain. This is done simply: all operations of type arithmetic and
relational are nil when either argument is nil. Additionally, it is convenient to have
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undefined arithmetic operations--zero divide, overflow, underflow, etc.--produce nil as
their value. This effectively imposes the interpretation on nil of an “undefined

element”, in the sense of "plus-or-minus infinity",

We may then write functions which can pretest their operands before applying the

actual function. For example,

(nleige))+9

will have a non-empty value iff nis in the closed interval [i,j]. Its Algol counterpart:

if {(n le i) and (n ge j) then n+3 else INFINITY

is less concise.

Combinations of conditionals and relationals provide further evidence of the

conciseness gained by combinatoric devices. For example, the "max" functic:

i max j i ge j elsej

would require an extra clause in Algol:

max(i,j)= if i ge j then i else j.

From a language desigh viewpoint, combinatorics should not be “"unnatural” in the
following sense: when there is a clear choice between two possible interpretations for a
construct and neither is clearly more intuitively appropriate, the choice should not be
made. For example, it may be inappropriate to define addilion between characters and
integers, for there is no obviously appropriate choice for the result type.

This precept was violated in the choice of the left operand as the value of a true
relation. We now replace that choice with more consistent interpretation based on the
notion of "section" and an observation about of the usage of relations. We define the
"minor" argument of a binary operation to be its right operand. Binary operators are

considered to be instantiated in their minor argument when they stand unparenthesized:
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a=bz=a(=b)
We modify the interpretation of relations:
a (rel b) = if a rel b then a else nil
and
(arel) b =if arel bthenb else nil.

With this interpretation, the range specification can be made more naturally:
(ile) b le j

to have the value b when in the interval [i, j] Most expressions involving relations
involve arguments which are ranked, in the sense that one is varying and one is
constant. The combinatoric decision represented by the above interpretation permits
the more constant operand to be instantiated first as the minor operand. (Some formal
work is required to assure the above interpretation is consistent; for example, in
"a . (le %) . b", one must presume that the elemants of "a" constitute the minor
argument to the relational, because of the left-to-right evaluation sequence.)

Note also that it is particularly important that no flexibility is lost by including
combinatorically useful interpretations of primitives. If one prefers to emphasize the
symmetry of a boolean decision, for example, he can always revert to the boolean
interpretation, as in:

altb
then a
else b

In one sense, combinatorics may be envisioned as maximizing the useful default
interpretations of syntactic constructs, subject to the non-artibtrariness requirement
mentioned above. We reiterate, the fundamental decision is to use combinatoric
"sower"--none of the particular decisions in these examples is neccessarily of global

s 1nificance to language design.
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Examples

The following examples are presented primarily to familiarize the reader with use of
the basis in more realistic problems than have been presented above. The examples
evoke extensibility issues which relate to claims of conciseness for the language.
Throughout this work, each example program characteristically includes two sets of
functions which will be referred to as "basic" and "ad hoc". The former are those
functions which would presumably be part of a language developed from the basis.
Although each is expressed in terms of the basis, the function may be either
implemented or part of a library facility in the actual language. The “ad hoc" functions
are very particularly related to the problem at hand, and could rarely be used
elsewhere. Naturally, it is to the language’s credit if the "ad hoc" functions for any
particular task are few. That is, languages, once defined, are only ever rendered more
concise through extension; hence, the ability to easily define functions for general usage
is important,

Complex, inconsistent libraries can arise in any language; in the basis, care must be
exercised not to terminate sequences in an ad hoc fashion and not to take the val until
after the sequence has been isolated as a unique function. For example, the largest

power of "2" less than or equal to a number "n" could be written:
Ip2le n :: 1 / (mul 2 %) while' (le n) val
The following factorization would be preferable, however:

powersof i i <l; 1 /(mul i *) gen>;
powersof2 :: powersof 2;

powersof2le n :: powersof 2 while (le n);
Ip2le n :: powersof2le n val;

for each of the components of the function is of potential utility in other contexts.
Naturally the user must believe the original implementation will result from substitution
rather than an actual layer of "generator calls".

tSee [9] for definition.
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1. Matrix muitiplication
In the following, "u" and "v" represent row vectors, "M" and "N, matrices
(sequences of row vectors). All the functions in this example are basic:

Mcolumni = M. (subi %)

g <M, sub i; My sub i; ..>,
M transpose :: M column * . Pt;

= < M column 1; M column 2; ..>
urowmul v iiu. (mul%). v;

£ <up mul v; up mul vp; >
usigma 0 / (+x. u)val;

m

<0+uy; O+uj+up; O+ug+uz+ug; ..> val;

uIp v it u rowmul v sigma;

O0+(ug mul vi)(up mul vo)+ ..+ (Up mul vp);
reMMarip 5. (M transpose)

= <r ip (M column 1); r ip (M column 2); ..>
MMMN M. (rMN #)

= <M; rM N; Mz rMN; >

Although the basic functions are self explanatory, some problems are encountered
in dealing with the potentially infinite transpose function. The transpose defined is
appropriate for arrays with rows of unbounded length. Such an array could arise in a
histogram for a set of system parameters in an operating system, for example, where
termination of a row is tantamount to the system crashing, an event of finite but
unbounded length. The transpose might then be a very useful function for a printer
output routine. I

However, the transpose function (by itself) will never terminate: its structure is
simply an infinite loop, and the later rows of the transpose will consist of ail nil
elements, as "i" in "column i" exceeds the row length. Although we are dealing with the
same phenomenon as encountered in insuring that the head function could deal with an
infinite sequence, the termination is somewhat more complex. There are two issues

iSee [8] for definition.
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which complicate the function. First, we prefer to allow the transpose of arrays with
different size rows. Second, we wish to allow empty elements in the array.

If we allowed empty elements only as the elements generated when the row was
exhausted, we could safely terminate the array with the following function, which simply

tests to see if the entire row consists of nil elements:

v notempties :: v . (ixs %) val then v;
M transpose :: M column . P while notempties

For example, if M = <<3; 9>; <1>; <4; 7; 8>, then

M column x . P
£ <<3; 1; 4>; <9; nil; 7>; <nil; nil; 8>; <nil; nil; nil>; ...>.

Also,

<3; 1; 4> notempties
£ <3 txs; 1 txs; 4 txs> val then <3; 1; 4>
= <3> val then <3; 1; 4>
= 3 then <3; 1; 4>
£ <3; 1; 4>,

Similarly,

<9; nil; 7> notempties
£ <9> val then <9; nil; 7>
® <9; nil; 7>

<nil; nil; 8> notempties
= <nil; nil; 8> val then <nil; nil; 8>

£ <nil; nil; 8>.
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However,

<nil; nil; nil> notempties

<nil txs; nil txs; nil txs> val then <nil; nil; nil>
<nil; nil; nil> val then <nil; nil; nil>

nil.

(1]

Hence, the transpose terminates with:
<<3; 1; 4>; <9; nil; 7>; <nil; nil; 7>>.

Now note that the above function works for unbounded arrays: the transpose
te: minates iff the original array generator does, and the transpose generation proceeds
along with (cosequentially with) the original array generation. However, the general
case--permitting empty elements anywhere within the array--remains problematic. For
example,

<<3; nil; 4>; <1>; <9; nil; 7>> transpose
= <<3; 1; 9>; <nil; nil; nil>; <4; nil; 7>>,

but the above function will terminate with the first element.

Two solutions suggest themselves. The simpler is to replace nil by our own version
of "NIL"--a token. The normal problems with finding an unique element are attendant
with this solution®, but it is of some pedagogic interest to illustrate how it may be
accomplished. Assume, "NIL" is a unique element which cannot occur within the
argument matrix. We may replace nil in an array by NIL using:

M fromnil : M. (. (else NIL %) %),

For example:

tUltimately, an unbounded sequence of unique tokens in nested cotexts is required.
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<<3; nil; 4>; <1>; <9; nil; 7>> fromnil
z <<3; nil; 4> .(else NIL *); <1>(c!se NIL> #);
<9 nil; 7> . (else NIL %)>

<<3 else NIL; nil else NIL; 4 else NIL>; <] else NIL>; ;
<9 else NIL; nil else NIL; 7 else NIL>>

<<3; NIL; 4>; <1>; <9; NIL; 7>>. ]

We may then remove NIL after applying the iranspoée above, using a similar function:
MfromNIL : M. (. ( ne NIL %) %),

and can define the new transpose in terms of the old:
M transpose :: M fromnil transpose fromNIL.

However, finding a unique element not present in any array requires a dynamic
unique name generation scheme which we are not prepared to deal with presently, and
which we are never prepared to deal with efficiently. Thus, a second solution is
proposed.

Again, we use the transpose function which terminates with a row of empty
elements. The method used is to simulate a "boolean array" which has nonempty
elements wherever the transposed array has elements of any sort. This boolean mask
array may be generated:

M Bmask :: M. (controlst (1%) %),

Eg.

<<3; nil; 4>; <1>; <9; nil; 7>> Bmask
£ <<3; nil; 4> controls (1%); <1> controls (1x);
<9; nil; 7> controls (1%)>
<<ly 1; 1> <i><l; 1; 1>>

m

tSee [7] for definition.
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Applying the transpose above to this array will then terminate after the same number
of rows are generated as in the required transpose for "M". Hence, this can control the
length of the actual transpose:

M transpose :: M Bmask transpose controls (M column . P).
This is the general transpose for 2-dimensional arrays which permits:
nil elements;

Rows of arbitrary lengths;
Arbitrary elements;

B Q] T =

Unbounded cosequential generation of the transpose as the argument array is
generated.

Another negative aspect of the functions is that many are primitive in APL, and'
hence, the basis is less concise for this problem. This is to be expected throughout:
APL will always do better when problems are formulated directly in its representation.
On the positive side, the transpose is more general than APL’s (for matrices), in the
sense that it allows unbounded length rows in non-homogeneous arrays with possibly
empty elements.

Also note the ease with which the basis is extended; each of the defined functions is
useful for a large class of problems. The same functions in Algol-like languages involve
temporary arrays and loops, and by no means lend themselves to simple functional
composition, as do these.

2. Recursive programs

Although any Turing Machine may be defined in terms of the basis*, and hence, all
recursive functions are computable using it, such justification is not germane to

TS I8 afe s S o @R e e DEEE S

tSee Appendix V for a construction.
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higher-level language design. Re-ursion must be part of the basis unless suitable

operators exist which allow a more corcise specification of what would normally be
accomplished through recursion.

We illustrate conversion of a particular recursive schema to the basis, and
consequently to an iterative algorithm:

f(x) = if x = k then y else up{f{down(x)),x),

wlhere "up" and "down" are not recursive functions. (The simple termination predicate
i chosen to avoid clouding the primary issues involved; an arbitrary predicate and
termination function may be substituted for (=k) and y, respectively, with only minor

modifications to the function to be presented.)

The essential implementation device is to compute an accumulation sequence of

values of the function "down". In an implementation this sequence would correspond to

|
r the "stack”. The sequence, reversed, becomes an argument to an accumulation of the
;
|

function "up”. In particular, note that computation of the stack sequence preceeds the
computation of f:

<down(x); down(down(x)); down{down(down(x))); ...>

until its last element is such that "down(lastel) = k". Substituting:

<813 825 w. ; Sp>

for the above sequence, the sequence:

<up(y,sn); up(up(y,sn),sn-1) ...
up(up(...up(y,sp),sn-1))s1)>

will be computed. The val of this sequence is the value of the function.

Hence, we can define a stack sequence function:
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x computestack :: <x; x/(down %) gen> while (ne k).

The recursion sequence reverses the stack and simply accumulates the recursive result:

x fy/lup . (x computestack reverse)) val

where the reverse function is:

s prefix y i <y> conc s;
s reverse :: <>/ (prefix * . s) val.

Of course, this is less concise than recursion! However, recursion is frequently a poor
way to implement a function, as the following example will illustrate.

To compute the exponential function "i" to the "ith" power, a recursive function (for

constant i) is:
f()) = if j=0 then | else
if odd(j) then ixf(j-1)
else f(j/2)xf(j/2).

We may write:

k odd :: k mod 2 = ];
j down :: j odd then (j-1) else (j div 2);
m up j :: j odd then i else m mul m,

Substituting these functions in the above schema then gives the appropriate function in
terms of the basis.

Note that the recursive function may be rewritten:

f(j) = it j=0 then ] else
(if odd(j) then i else 1) * f(;/2)*f(j/2)
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where "/" indicates integer division. (This is a result of the fact that j-1 will be even
when j is odd, and hence, that {(j/2)=f((j-1)/2) will be computed immediately on the next

recursive call.)
We may now write:

j down :: j div 2;
m up j = m mul m mul (j odd then i else 1)

Note that for this value of down:
x computestack :: <x; x/(div 2 x) gen> while (ne 0)

is the sequence of numbers arrived at by right-shifting an accumulator initially
containing x (j in this case) on conventional machines. (Its reverse requires coupled
accumulators and/or special instructions for efficient machine implementation.) The point
is that from a canonical reformulaton of a recursive function, consideration of the
resultant stack sequence may indicate a much more efficient implementation than would
be expected; in this case, the standard "2 logs j" multiplications algorithm is illuminated

[KNJ¥.

The complexity of the above material perhaps indicates why "factorial” is normally
chosen as the showcase recursive function. If one recognizes:

<n; n/(-1 *)> while (ne 0) reverse
as equivalent to:

n pos

the normal basis expression for factorial will be derived using the above schema
substitution:

tSee Appendix IV for a similar example (right-to-left instead of left-to-right) and its
compilation from the basis.
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n factorial & 1 /(mul ¥ . (n pos)) val.
nwaccamination of Cecisions

The fundamental decisions involved in tle development of the basis are:

To use an applicative languaze framework;

To apply the gotolecs constructs to nested <equential structures;

To use a generative technique for tlie production of sequences;
To include non-trivial "apply” operators as primitive--in particular, "." and "/"

A

To use a syntax with high combinatoric power.

Of remaining interest regarding the first two decisions is the question of how the use of
pamters so constramned differs from tradiional use of reference variables and
assighment statements.  Of particular interest 1« whether additional control constructs
are nceded to accomplish what are considercd rorrect, well-controlled notions that the
removal of the pomter from data structures precludes.

The decision to use a gencrative mechanism is based on the separate views
programmers have of the action of algorithms on data structures and the way the action
actually occurs. The generative notion is presently quite simplistic and extremely
constrained. What remains to be seen is the extent to which generative aspects of
programs ray cxist in the constrained environment of an applicative language. The
implementation technique of coroutine usaze for generative programming activities is
clearly the fundamental mechanism to be studied: how can we include the coroutine and
how must it be constrained to fit the structured programming framework? The notion of
factored lermination is scparable from that of generaiion; one can imagine a generative
specification of APL operations. In fact, Abram’s work [AB] essentially employs a
generative implenentation about which efficiency considerations are more easily made.
However, there is no way for the programmer to exploit a generative specification or
implementation of APL, for ali operations are defined over finite arrays. Additionally,
APL’s consistent extension to deal with unbounded sequences in any general way would
be non-trivial. By separating length-controlling facilities for sequence generation from
their specirication, the issue of generation of results becomes fundamental in the

basis--programs may be written with infinite sequences in mind.
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Choice of the cosequential operations over a recursive generation base represents
another major decision, largely independent of the others. The extent to which the
cosequential application of programs to data to produce a result sequence summarizes
operations over homogeneous sequences remains to be presented, as well as the extent
to which "corecursive" operations over non-homogeneous nested sequential structures

can be developed.

The major implication of this section lies in the development of a syntax with high
"combinatoric power”, not in the particular sysntactic mechanisms used in examples.
The combinatoric power relates to extension facilities as well as to primitive operation
definitions. The decisions to use an operator language, a typeless language, a
nonstandard detinition of the retationals, to apply the gotoless constructs as operators,
to rely on the "partially instantiated function”, etc., all relate to concise combination of
operators. In fact, the cosequencing operators can be looked upon as “"combining
mechanisms™.  In order to separate issues of syntax from semantics, Backus’ work
[BA,1972,1973] encourages us to look upon the entire activity of programming as an
exercise in combinatorics. Although we do not hold this view (our operators are
derived from machine-oriented operations), Backus’ work makes it clear that
combinatoric considerations are important to language design. Insofar as possible, we
wish to avoid syntactic issues for the remainder of this work, in order to concentrate on
the semantic issues of cosequencing and its relation to traditional data/control

structures.




CHAPTER 1l

RECURSION

The initial language basis adequately summarizes many sequential operations on
data structures and the sequential creation of many homogeneous data structures. In
this chapter, non-homogencous program and data structures are examined in an attempt
to describe more complex operations concisely.

It is important to notice that the basis at this point is computationally complete, for
the effect of a Turing Machine may be encoded easily (see Appendix V). Hence,
hereafter, the addition of operators to the basis represents efforts to obtain "difficult”
effects more easily. The approach is guided by common usage of traditional language
facilities not present in the basis, in conjunction with cosequential-generation notions
introduced previously; no attempt is made to duplicate the traditional facilities
themselves.

The primitives added hereafter must be considered even more tentative than those
in  the initial basis, for more complex entitites are considered and
combinatoric/involutional  problems expand exponentially. Additionally, issues
orthogonal to sequential considerations--viz.  association mechanisms, atomic
representation issues, types, etc.--complicate on the more realistic problems arising
from non-homogeneous sequences. However, the extent to which they are bothersome
is reduced by careful selection of examples for presentation; i.e., the reader is led down
a "primrose path" in order to amplify the relevant issues.

We wish to deal with a broader class of nested-sequential structures than can be
handled easily with the initial basis. In particular, in the initial basis sequences
consisting of elements which may be either sequences or primitives (non-homogeneous
sequences) must be dealt with via explicit "pulsing" of the data structures by the
program. The use of "car" and "cdr” in LISP constitute "pulsing" a list--see Chapter I,
for example. Analogous functions must be defined to deal with recursive structures in
the language basis (see Appendix VII for an example). It is exactly this pulsing which is
is eliminated for sequential structures by the cosequencing operators, and so we look
for cosequential recursive ("corecursive") operators to deal with non-homogeneous
sequences.

The task of compiler construction is considered as a motivation for corecursive
operations. A fairly standard breakdown of this task consists of functions--"lexemes,
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syntax, code, output”--which, when applied successively to the input sequence produce
the translated program, viz.

inputseq lexemes syntax code output = compiled program.

Commorly, the above program would be called a four pass compiler--one pass per
function applied to the argumentt.

The implementation of a compiler as a single pass over the input data is of frequent
concern to compiler writers. In such an endeavor, the breakdown above is retained,
but the functions are executed "cosequentially”. In particular, assume "syntax" creates
a parse "tree" (in terms of "atoms" from the function "lexemes"), and “code"
(optimization) proceeds by considering successive "syntactic handles” of the tree [FG].
The program starts by attempting to “"output" code. Initially, no code has been
p:roduced, so “output” pulses "code” until it produces enough of a tree--a statement, for
example --for which "output” can output code. Naturally, "code" has no input initially so
it calls "syntax" until it can produce enough handles for code to optimize. This process
continues until enough of the input sequence is read to produce enough lexemes that
"syntax" can generate enough tree for "code" to proceed with satisfying "output”. The
process then cycles. That this process is "cosequential” is clear; however, the
structures with which we are dealing--trees--cannot be handled well with the primitives
from the initial basis. In what follows we shall exhibit cosequential operators for trees.

Recursion

In order to study recursive program and data structures, a recursive definition
ability is added to the basis (temporarily). The gains represented by the cosequencing
operatcis of the initial basis are then considered briefly in terms of a recursive
formulation of these operators. It will be shown that the notions of cosequencing,
unbounded generation and factored termination affect such a formulation.

Although it would be possible to extend these notions to recursion--and include the
recursive definition capability permanently--we choose to limit the recursive structures
definable within the basis. This limitation parallels the way the gotoless constructs limit
the sequential structures definable in programming languages that lack the goto. Hence,
tHistorically, the notion of "pass" referred to the number of times the program had to
be read by the compiler until ultimately enough information was available to compile it.
Present day (large memory) machines have modified this to the number of complete
scans of intermediate representations the program undergoes during the compilation.
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the existence of “recursionless” constructs, analogous to gotoless constructs, is
postulated and studied in detail below.

We choose to (temporarily) install the recursive definition ability via introduction of
a quote operator, "™, which precludes operator body variable binding at operation
definition time. For example,

x f o x =1 else (x-1 f mul x) (1]

then represents the factorial function expresed recursively (divergent for 0). Note that
it "{" were not quoted in the body, whatever previous definition of "t" exists would be
the appropriate reference. (Quoted names have the "normal” LISP binding, names which
are not quoted have the "FUNARG" [McC,1965] or Algol binding.)

To illustrate recursive definitions of "." and "/" we need two primitive functions,
"Ist" and "tail", analogous to the LISP functions “car” and “cdr”, respectively, when
applied to lists.

x id 1 x;

x null i <> gen;

list 1st :: list . <id> val;

list tail :: list . <null; id * gen>;

Given these two functions as primitive, we can describe "." and "/" (used as names
below) recursively:

s . q = <s lst (g lst) s tail *. (q tail) ger>; [2]
v [su<v(s Ist) v (s 1st)’/ (s tail) gen>

This implementaion is inadequate in that no termination conditions are present. With an
additional primitive, "isemptyseq", the functions could terminate when "s" or "q" is
empty. By providing a mechanism for dealing with “quoted programs” (a desirable
provision) we could terminate contingent on escape function values. However, this
would still be inadequate, for unbounded sequences such as "++P" would never

terminate.

Providing a truly adequate evaluation mechanism is tantamount to implementing the
basis (considered in Chapter IV and Appendix V). Essentially, a recursive coroutine
simulation is required; more arguments ar: required to each function call of “." and W
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Hence, a recursive implementation requires a significant amount of detail to simulate
and "/", and is less "natural” than the basis for modelling cosequential activity.

As we mentioned above, the ideas of cosequentiality and unbounded generation can
be extended directly to recursive functions such as [2]; we do so in a more constrained
manner below. The above discussion simply points out that it is no easier to implement
the cosequencing operators in the framework of a recursive language than in the
framework of a sequential language.

Notice, also, the use of "lst" and "tail" constitutes explicit "pulsing” of a data
structure by a program structure. For some programs in the basis, this explicit pulsing
is eliminated by the “." and "/" operators. Programs written in the basis in which
pulsing is required may be characterized as either “recursive" or “"codependent” (or
both). Two siructures are "codependent” if they depend on each other functionally but
neither can be classified as functionally superior in importance. An “inventory file" and
a "manufacturing order file" exhibit signs of codependence. The necessity for such
structures arises when a function in an applicative language has no "clean" functional
decomposition. Such structures are considered in Chapter IV,

Recursive structures are characterized by potentially infinite nesting, as well as
some degree of "branchiness" (see "essential recursion” below). This infinite nesting
could arise either from (traditional) explicit recursive use of finite operators or from use
of potentially infinitely recursive operators analogous to " and "/". The simple
extension described above handles the first case. For the second case, we will define
recursive analogs of "" and "/". These will have the properties of the corresponding
opérators in the initial basis, permitting:

1. Unbounded cosequencing, and hence,
2. Factored and implicit termination, and
3. Factored data/program representation (non-pulsed data structures).

This chapter represents a search for recursive operations which are amenable to
the ideas of cosequentiality, unbounded generation and factored termination introduced
in the initial basis. In one sense, such a search is premature: the initial basis relies
heavily on the ability of the gotoless constructs to adequately summarize sequential
activity of programs. This point of departure is significantly more advanced than that
for recursion. We do not possess a set of "recursionless constructs” which adequately
cover recursive program activity in the same sense as the gotoless constructs cover
sequential program activity,
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Intellectually, this parallel between the goto and the recursive call is very
appealing--multiply nested mutually recursive functions are easily as complex as
programs with “rats’ nests" of goto statementst. Ideally, the definition of a set of
recursionless constructs would lead to the elimination of a recursive function definition
facility in programming languages.  Naturally, this elimination would complete the
removal of complex program-to-program pointers from programs, relegating function
call to a substitution process (which is is already required of any practical
implementation of the initial basis),

Thus, in what follows, we are faced with two separate issues: defining
“recursionless” constructs and understanding the relationship of of the concepts of the
initial basis to these constructs, Unfortunately, our results in this area are only
"suggestive"--we cannot propcse a set of recursive operators which cover well all
instances of recursion (again, In the same sense as gotoless constructs cover well all
instances of sequentiality). It is not surprising that our results in this area are
incomplete, in view of the history of the development of the gotoless constructs, the
difficulty of expressing their operators in the basis, the constraints imposed by
requiring that they apply to data structures as well as program structures, and the
unbounded generation notions. However, we do feel that a search for "recursionless®
constructs is a fruitful area for future research, and attempt to indicate an approach to
this problem in the following pages.

Sequential Functions on Recursive Structures

Two very common types of recursive algorithm are considered in initial attempts to
define recursionless constructs for the evaluation of functions on recursive structures:
“top down" and "bottom up”. From the recursionless constructs which arise from these
considerations, operators are derived for inclusion in the basis. The operators so
derived, although arising from quite specific recursive algorithm types, are extremely
general when used in combination. Hence, at the end of this section they are related to
some very general recursive forms.

1. Top down recursionless construct

Although “top down algorithms" are very common, languages dc not generally
contain constructs which permit their concise specification or explicit identification as
such. When one refers to a “top down" evaluation procedure defined on a tree
(arbitrarily nested sequence, in this context), some function is applied to the root node

tArbitrarily complex programs using gotos may be simulated with procedure calls
[vW,1966].
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before any function is applied to its subnodes. This may be expressed recursively in"

the basis as:
t topdown i t td . (topdown *) (3]

where "td" is the top down function applied. For example, if

t td o <t Ist;t val>
then the tree argument ("t") is simply trimmed by the top down function:

<<1;2;3>; 8; <5;6>> topdown

s <<]32;3> 4; <5;6>> td . (Ttopdown *)

<<];2;3>; <5;6>> . (topdown *)
<<},2;3> topdown; <5;6> topdown>

<<1;2;3> td . (topdown #); <5;6™ td . (topdown *)>
<<];3>. (topdown #); <5;6> . (topdown *)>

m

This example will not terminate (exs >t perhaps frora an error of attempting to coapply
an integer to a sequence).

Hence, some terminatinn predic ‘2 ("tp") is used to decide whether to continue the
recursive algorithm, and a termination function ("tf") is applied when the recursion halts
along any path in the structure; ie.,

x topdown : x tp then (x tf) else (x td . ('topdown %)) [4]

Of course, this is a very simplified version of a topdown .lgorithm, for there may be
multiple arguments, mutually recursive topdown functions, etc., and, in fact, normally
some information is passed down as recursion occurs. These will be considered in some
detail later in this section. However, the relationship of the recursive control to the
invoked function is captured by this formulation.

Normally, the notion of a "top down" aliorithm implies that the result of the top

down function itself is related to the original node; ie., "td" acts as a selector of a
sequence of subnodes. By not insisting on the selector relationship, the functions

+At this point we may drop the quote (™), for the function "topdown" (in this case) is
now defined.
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above ([3] and [4)) are, in fact, too general to represent top down functions constrained
to trees. This generality is convenient, for it provides a broader notion of top down
algorithm which is constrained not to trees, but rather to a control structure which is a
tree. This models the intuitive notion of top down algorithm very precisely. If this
tree-like control strucure arises from application of a top down algorithm to a tree, the
nodes of the control structure will correspond to the nodes of the argument tree. A
notion of “corecursion” is emerging.

Despite the objections to the form [4], we can attempt to define a recursionless
construct for an Algol-like, higher-level language. Its syntax might appear thus:

<recursionless construct> = 5]
topdown <control variable>«<initial value>
<termination specification>
do <top down functicn body>;

<termination specification> ::= <termination part> <application part>

<termination part> = <empty>
/ until <termination predicate>
[/ while <termination predicate>

<application part> ::= <empty>
/ whence <termination function>

where the correspondences: "tp" with <termination predicate>, "tf" with <termination
function>, "td" with <top down function body>, are only approximate. (Empty
alternatives for the <termination part> are to permit a default interpretation for these
constructs.)

Although semantics of such a construct would be very language dependent, the
construct itself is to be included in an expression language, and the language must be
equipped to deal with lists. Then the value of the <top down function body> must be a
list. Recursion will occur on each element of the list produced by the <top down
function body> (These elements are normally themselves lists.) The control variable
takes on the value of the current subnode at any point in the recursion, and the
variable is available for reference in the various parts of the construct. Before
recursion occurs on any node in the structure, the termination predicate is tested.
When satisfied, the action of the termination function takes place; otherwise, recursion
occurs. For example, a function which adds "3" to the terminal nodes of a tree, "T",
might be written:
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topdown t«T until atom(t) whence t«t+3 do t; (6]

A more complex function, which does tie same only to nodes arising from the first and
third branches from each node, could be written:

topdown teT until atom(t) whence t«t+3 {7}
do concatenate (t[1]t[3)).

The nature of the created value would be particularly language dependent--i.e. the
construct might be modifying a recursive data structure as intended in [6] and [7], or it
might be creating a new one. Several constructs may be necessary to cover these
interpretations.

At this point we have a recursionless construct; before proceeding to the
development of others we consider the problems involved in putting such a construct
into the basis. Clearly, we would not include it directly, but would rather reformulate it
as separate operators dealing with the wvarious portions of this somewhat
command-oriented syntactic construct.

In order to do so, we examine the loop construct of Algol-like languages and note
the aspects which allowed its factorization and subsequent inclusion in the basis. A
‘raditional predicate hased construct, the for statement, consists principally of:

for <variable>«<exp> [until/while] <termination predicate>
do <loop hody>.

This construct takes on several different forms in the basis depending on whether the
variable is used to count, accumulate, or index, but invariably the termination predicate
is separate from the loop in another (cosequential) loop in which one of the escape
operalors is used, or else the termination is implicit.

Naturally, we would like to retain the separation of termination from a recursive top
down operator. For the moment, we ignore the various relations of cotrol variable to
top down functiont. We can then consider including a top down operator in the basis,
“", which will accomplish the top down recursion between a tree “t" and right-unary
function, "td":

t Ltd st td. Cltd %) (8]

A natural implicit termination condition is that recursion has reached a primitive node
(integer, character, etc.).
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However, we are then left with the problem of the <termination function>. If we
default this to the identity function (again temporarily), we can then write some
reasonable top down functions. For example, using the "tail" function defined above,
we have:

<l; <3;5;7>; 9> | tail
= <]; <B3;5;7> 9> tail . (I tailx) (9]
<<3i5;7>; 9> . (I tail )
<<3;b;7> | tail; 9 1 tail>
= <<3;5;7> tail . (I tail #); 9>
g <<B;7>, (] tail x); 9>
<<5 | tail; 7 { tail>; 9>
<<5;7>-, 9>

m

which is the tree with all initial sub-nodes removed.
A more complex function which selects only the odd sub-nodes at each node is:
t oddsn :: t | (.(<id; null> gen %))
For example,

<1;<2>; <3; 4; 5>; 6; <7>> oddsn
= <l; <2>; <3;4;5>; 6; <7>> . <id; null; id; null..>. (oddsn %)
= <]; <3;4;5>; <7>>, (oddsn %)

<1 oddsn; <3; 4; 5> oddsn; <7> oddsn>

= <l; <3;4;5>.<id; null; id; ...>.(oddsn #);

<7>.<id; null..>.(oddsn *)>

<1; <35> . (oddsn %); <7>. (oddsn #)>

<l; <3 oddsn; 5 oddsn>; <7 oddsn>>

<l; <3; 5>; <7>>

#Throughout this section, the top down operator is generalized (through redefinition) to
enable effects which would be obtained through the use of a control variable. Do not
be misled by the constrained nature of the first few definitions of the top down
operator.
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Hence, we have a viable implicit termination mechanism. The problem of application
of the termination function (the "whence" clause in [5]) can be surmounted to some
extent by the introduction into the basis of primitive predicates:

x atom? = x if x is atomic (primitive), nil otherwise;
x seq”? = x if x is a sequence, nil otherwise.

It it is desired to apply function "tf" to the implicitly terminal nodes, we can rewrite the
top down function to do this. For example, in the tree with initial nodes removed [9), if
it 1s desirable to add one to the terminal nodes, we may write:

x auxf :: x atom? +] else x
Then,

<l; <355;7> 9> | (tail . (auxf %)) [10]
<1; <3;5;7>; 9> tail. (auxf ). (1 (tail . (auxf %)) %)
<<3;5;7>; 9> . (auxf *). (I (taii. (auxf ) %)

= <<3;5;7> auxf; 9 auxf>. (I (tail . (auxf *)) %)
<<3i5;7>; 10> . (1 (tail . (auxf %)) %)

<<Bi5;7> 1 (tail . (auxf %)) 10 { (tail . (auxf %))>
<<3;9;7> tail . (auxf *). (I (tail . (auxf %)) x); 10>
<<5;7> . (auxf *). (l (tail . (auxf %)) £); 10>

<<5 auxf; 7 auxf>. (I (tail . (auxf %)) £); 10>
<<6;8>. (l (tail . (auxf ¥)) %); 10>

<<6 1 (tail . (auxf %)% 8 | (tail . (auxf *))>; 10>
<<6;8>; 10>

"

"

n

However, this skirts the termination function issue to a large extent. . Both the
termination predicate and the termination function are troublesome. In the following
section we generalize the top down function somewhat, and approach the problem of
termination in greater detail, for the issues involved have analogs in the initial basis and
are related to the coroutine notions of Chapter IV.

2. Top down reexamined

We may summarize the problems with our attempts to express the top down
mechanism of the preceding section as operators in the basis:
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1. Termination is necessarily implicit;

2. The termination function had to be applied from within the top down function
itself;

3. The termination function could not itself produce a sequence--otherwise, the
top down mechanism would have continued to be invoked.

Additional problems remain, related principally to the <variable> portion of the
recursioniess construct specification. In the gotoless loop constructs, several
constructs were required to replace the control variable--the use of "." and "/" as well
as some functional tricks frequently applied to the positive integers, "P". These
problems occur within top down control, also, although they may be subverted through
encoding tricks to a large extent.

To illustrate, a top down func' on, "t", which replaces each terminal node ("n") of a
tree "t" with the length of the longest sequence of which "n" is a subsequence is
programmed below ¥:

imax j =i gt else j;

i merge s :: s seq? then <i; s gen> else i;

t tdf :: t length - 1 max (t 1st) merge *. (t tail);
tf:<0;t gen> | tdf

Clearly, the recursive implementation is more concise and intuitive:

t aux len :: t atom? then len [11]
else (t . (aux (t length max len) %));
tfataux O

The failing is a natural one common to r>cursive functions restricted to a single
argument--secondary arguments must be encoded. In the material below, top down
functions for more than one argument are developed. Also, some of the objections to
the previous top down function are removed.

+That is, with the degree of the node of highest degree on the path from the root to

n
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Presently, a top down function is developed which represents a recursive function
defined on a single argument but which is a simple extension to the previous top down
function and which permits some multiple argument recursion effects quite easily. It
essentially involves the notion that recursive control can be imposed on a sequence of

E functions instead of a single function, "td". A vertical relationship between the nodes of
a tree and the elements of the program sequence is established; viz.

Tree Program

= = == fl.

—_— ==

In particular, the top down function above [8] is redefined as:

tdfs ot (fs 1st) . (1 (fs tail) %) (12)
Recursion terminates when the function sequence terminates or when t is atomic. The
ability to terminate the sequence of sections ("partially instantiated functions") permits
termination prior to the ad hoc nodes of the tree. Also, the depthwise orientation of
the function sequence application allows some effects that would require either multiple
arguments to the recursive function or mutually recursive functions. The former effect
is illustrated Lelow by a function which trims its argument tree by going no deeper than

n" levels, replacing the nodes at level "n+1" by the number 40000:

x lid y = x;
xridy sy;
t depthn it | <lid . (n pos) gen; rid 40000>

For example,

<l; <2; <3;4>; 5>; 6> depth 2
e <]; <2; <3;4>; 5>; 6> | <lid x. <1;2> gen; rid 40000>
® <]; <2; <B;4>; 5>; 6> | <lid 1; lid 2; rid 40000>
2 <]; <25 <3;4>; 5>; 6> (lid 1). (I <lid 2; rid 40000> *)

<1 1 <lid 2; rid 40000>; <2;<3:4>5> | -.id 2; rid 40000>;

6 1 <lid 2; rid 40000>>

<l1; <2;<3;4>:5> (lid 2).{1 <rid 40000> x); 6>

g <]; <2 | <rid 40000>; <3;4> | <rid 4000>; 5 | <rid 40000>>; 6>

L]

m
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<]; <2; <3;4> rid 40000; 5>; 6>
<]; <2; 40000; 5>; 6>

The recursive function which it replaces requires either two arguments (for fixed
“n"), or use of the messy encoding scheme presented above in [11]:

t auxf d :: d gt n then 40000
else (t atom? else (t . (Cauxf (d+1)x)));
t depth :: t auxf |

Hence, a very simple aspect of mulliple argument recursive functions is captured by the
(final) reformulated top down function [12).

A more important aspect of recursive functions permitted by the
sequential/recursive top down function is the ability to define mutually recursive
functions by alternating the operators applied in the top down sequence. For example,
when dealing with “and/or" trees?, it is normally the case that ditferent types of nodes
are treated differently. Given such a tree, "aot" ("or" node at root), we can program a
function which selects the first alternative consistently (at each "or" node) as:

aot basetree :: aot | (<lst; id> yren %)

A canonical recursive formulation would be best written using mutually recursive
functions:

aot and :: aot atom? else (aot . (Por *));
aot or :: aot atom? else (aot 1st and);
basetree :: or

Inasmuchas "td" is a sequence, we can consider the effect of allowing escape
functions in the sequence. Althouzh several choices for the meaning of an escape are
possible (terminate recursion, terminate use of any successive elements of the function
sequence throughout the remainder of the tree) the most reasonable seems to be to
terminate the sequence along the current path only. That is, recursion is terminated for

tAnd/or trees are frequently used in game-playing applications, syntax tree
representations, theorem proving systems, etc., [NI] where problems can be formulated
on the mututal occurrence (and) of choices from a set of alternatives (or).
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the particular node in question, but for no others. For example, the function "trim" in:

s L p:slength p then s;
ttrimn il (L(en)exst #)

would apply "t" to each subtree until it reaches subtrees whose length (i.e. "order" or
"node size") exceeds "n".

The value at the terminated node can be defined as the node which caused the
escape in the case of exs and the function value (operand) of txs. Thus, the above
example terminates recursion with the nodes whose length exceeds "n". The original
recursionless construct [5] should probably not be extended to approximate ‘he
embellished top down operator, unless an analog were introduced for loops. In
particular, one could imagine the do loop consisting of a sequence of loop bodies,
successive elements of which are used as the loop is pulsed. Although the possibility
should not be ruled out, such a construct seems a rather unlikely candidate for inclusion
in most languages.

At this point there are three problems with the top down operator:

L. The terminal function ("tf" in [4]) must be applied by top down in an awkward
manner (see example [10])

2. Binary argument recursion requires encoding techniques (see example [11])

3. We have not achieved a separation of termination from top down generation,
and, in fact, are unable to terminate well other than with atomic nodes-- i.e.
implicitly.

Presently, we discuss two more top down operators which alleviate problems | and 2,
which further develop the notions of cosequential/recursive generation, and which
relate very directly to the initial basis. Their development helps to illuminate the third
problem.

3. Top down coapplication
To reiterate, the definition of the top down operator with termination conditions is:
t |l td :: td emptyseq then t else

(t atom? else (t (td Ist) atom?)
else (t (td 1st). (4 (td tail) * )))
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In particular, we never recur on atomic nodes. This has the beneficial effect of not
requiring the top down functions to be defined on both sequential and atomic
arguments. rowever, it requires the messy implementation of [10] whenever we want
to recur on atomic nodes or when we simply wish to apply a terminal function "tf", to
the atomic nodes.

Notice that if we rewrite the top down form as 'hough there were no implicit
termination (other than riot to recur on atoms produced by the "td" functions) we have:

tltd::t tp then (t tf)
else (t (td lst) atom?)
else (t (td Ist) . (I (td tail) %))

If "td" sequences are defaulted to the identity sequence, "id *", we have simply:

t L (id %) =t tp then (1 tf)
else (t . ('l (id ) %))

We could then consider merging the termination predicate and function, which seems
quite consistent with the combinatoric nature of the basis--i.e.,, we could define an
operator:

tUtf ot tf else (t. (! tf %))

This would terminate recursion when "tf* returned a non-empty value, with that value.
Otherwise, recursion would proceed on each element of the argument sequence, “t".
However, this eliminates nil terminal nodes and propagates the problem we are trying to
eliminate: the "tf" function must then be defined on both sequences and atoms. Hence,
an alternative formulation, applying the function "tf" only when the node is atomic may
be considered:

t 1if o t atom? then (t tf)
else (t . (! tf x))

This doas permit terminal function application to atomic nodes, which is one problem we
intendeci to solve. In particular, example (10] may be rewritten:

t L (tail %) ! (+1)
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The extension of the above operator to allow a sequence of terminal functions as
the right argument is consistent with “l", and provides the same multiple
-argument/mutual recursion capabilities as it does in the original top down function.
Hence, the top down “"coapplication operator”, "" is defined:

tttf = tf emptyseq then t eise [13]
(t atom? then (t (tf 1st))
else (t . (' (tf tail) * ))

(Throughout this chapter, the use of nil as an element is restricted because we are
using the language itself to describe the effects we want in the language. Presumably
an implementation would be more careful about such a restriction.)

For example, if we wish to replace all terminal nodes with their depths in the tree,
we may writn:

ti(ridx. P)
and, hence,

<13 <3;7>, 9> 1 (ridx. P)

<l rid 1; <3;7> ! <rid 2; rid 3;..>;9rid 1>
<l; <8 rid 2; 7 rid 2>; 1>

<l; <2;2>; 1>

The notation "!" arices from the correspondence between this function and a

“vertical" coapply operator; the cosequential correspondence between the depth of the
argument tree and the section’s index in the "tf" sequence is apparent,

4. Top down accumulation

The second problem we wish 1o solve is that of binary argument recursive
functions. We do not solve it entirely here, but develop the top down accumulation

operator, "V", to relate one aspect of the multiple argument recursive function to the
rest of the basis.

Frequently, top down functions act as accumulations, with the accumulation sequence
branching recursively to the subnodes. For example, the function [11] (rewritten here
as [14]) defines a tree, each terminal node of which is the length of the maximal
sequence (node size) of which it is a subnode in tree "t":
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t f maxel :: t atom? then maxel else
t. (f (t length max maxel)s);
t maxltree 2t f O

The accumulated value is the maximum of the length and the accumulator--"maxel” in
this case.

Notice that this effect cannot be obtained using the final top down function [12], for
the right argument passed ("maxel") depends on both "t" and "maxel”. In addition, the
topdown recursionless construct above [5] does not permit a multiple variable
capability. Before introducing an operator into the basis to accomplish this effect, we
can consider extending [5]) to obtain the effect in the traditional language
"recursionless” cnstruct. An effective, simple method for allowing it would be to let
local variables ~efined in the <top down function body> be propagated in the recursion.
Initial values would have to be set in the declaration and the value retained when
recurring. The above function could be written:

topdown T«t until atom(T) whence maxel
do begin
integer maxel = 0;
maxel « max (length(T), maxel);
T
end.

Naturally, this mechanism would also be very language dependent, and a separate
phrase may be preferred for the accumulator specification and subsequent value.

The operator we are about to develop for obtaining this effect is related to the way
multiple variables are handled in the initial basis with iterations. In particular, in the
initial basis a form of accurulation which occurs frequently is: '

iv /(fs . s)

It occurs so frequently that it is reasgnable to attempt to make an operator which

dep2nds only on "fs" and "s" which acgmplishes the effect; e.g.,

fs reduce s :: fs functionzero / (fs . s

Y

where the initial value depends on the function itself. Another possibility is to simply
write the function and have its value be a section:
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fs reduce s :: / (fs . s)

Yet another is to insist that the function sequence have the initial value as its first
element:

fs reduce s :: fs st / (fs tail . s)

Any of these operators could enter the basis, or could perhaps replace the
accumulation operator of the basis. The top down accumulation operator is an analog
of the last choice:

tVid::t atom? else (td . <id;id> length = 1)
then (td ist)
else (t . (°V <t (td 2nd) (td 1st); td drop 2> #)

where
sdropi:s. <ihead (null *) gen;id ¢ gen>

The accumulation takes a tree argument, "t", and a sequence of binary operators, “td",
preceded by the initial value of the accumulator. These functions are applied to the
non-terminal nodes and the current value of the accumulator. When the function
sequence terminates or the tree node is atomic, the accumulator replaces the terminal
node in the result.

The function defined above [14]) may then be written:
t maxitree :: t ¥V <0; length max * gen>
For example,

<1; <2;3;8;<5;6>>; 7> maxitree
= <1; <2;3;8;<5;6>>; 7> . (V < <I; <2;3;4;<5;6>>; 7> length max 0;
length max % gen> #)
= <l V <3; length max * gen>;
<2;3;4;<5;6>> Y <3; length max * gen>;
7 ¥ <3; length max * gen>>
E <3; <2;3;4;<5;6>> ., (Y <<2;3;4;<5;6>> length max 3;
length max + gen>s);
3>
= <3; <2V <4; length max * gen>; 3 Y ..; 4Y ..; <5;6> V ..>; 3>
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<3; <4;4;4; <5;6> . (Y <<5;6> length max 4; length max & gen>%)>; 3>
<3; <4;4;8; <5 V <4; length max * gen>;

6 V <4; length max * gen>>>; 3>
<3B; <4;4;4; <4;4>>; 3>

m

The accumulation operator is the most tentative of the top down operators
introduced, for the operation never applies to terminal nodes and the association of the
initial value with the function sequence is distasteful. However, it is clear that a
relationship exists between cosequential accumulation and top down accumulation, and,
in fact, the basis should ultimately be reformulated to emphasize this consistency.
There is a similar relationship between "t | td" and "jv / ts". More extensive study
along these lines is necessary before a concrete reformulation can be made.

5. Summary of top down operators

At this point a top down "recursionless” construct has been sketched for use in
traditional Algol-like languages. The construct arises from pragmatic considerations of
how recursion is frequently used to generate a recursive structure. From this
construct (and imagined extensions) several top down operators--"{, !, and V¥"--have
been defined, which have implicit termination facilities and which relate effects obtained
using the recursionless construct in conjunction with its control variable.

These effects are analogous to those obtained in factoring the loop from gotoless
languages, and the top down operators are directly (vertically) analogous to the various
forms of usage of accumulation and coapplication from the original basis. The side
benefits of simulating mutual recursion and multiple argument recursive functions arise
from these operations.

The only serious problem concerns “corecursion”, insofar as termination of top down
generation is not factorable in the same sense as is sequential cogeneration. More
precisely, an implementation of:

s. fsl. fs2

is able to pulse generators for "s", "fs1" and "fs2" in a loop, apply the functions and
pulse all three again. The same is true for "!";

tfsl ! fs2

We can recur to the first terminal node, pulsing at each recursion level both "fs1" and
"ts2", applying the resultant function, etc. This is permissible because:
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t1fsl fs2=t!(fsl. fs2)
However, this association is not possible using "1" or "V, for
tlfsllfs2isnot=tl (fsl. fs2)

and hence, if "fs2" is a termination function (a tree trimmer) we cannot obtain the ef ‘ect
of the cosequential application. This is not the case with iterative accumulation--it -an
be executed cosequentially with coapplied or coaccumulated functions. The problem
arises from the lack of a result definition which is defined “"stage-wise" with recursion.
For example, the function:

<<0> 1; <2>> L (. (rid #) . < <<0>; 1; <2>>; 1; <<0> [; <2>> >) [15]
first defines
<<<0>; 1; <2>> 7; 1; <<0>; 1; <2>> 7>

and recursion will occur where the "Z"s have been placed. The second level of
recursion will generate:

< <<<0>; 1; <2>>7; 1; <<0>; 1; <2>>7>;
L
<<<0>; |; <2>>7; 1; <<0>; 1 <2>>7> >

Because there is no intermediate representation of these étages of recursion analogous
to the stages in iterative accumulation, infinite generations cannot terminate in the same
manner. (In essence, it is as though accumulation were defined as the val of its current
definition; the accumulation sequence per se would then be inaccessible.)

Although we can deal with this problem in terms of coroutines (see Chapter 1V), a
development which makes the various stages of the recursion part of the result would
be preferred. We simply do not see how to do this currently, but believe it can be
done.

6. Bottom up

A second candidate for a “"recursionless” construct is a "botlom up" operator. In
developing a bottom up recursionless construct we proceed exactly as with the top
down operator. A bottom up algorithm is frequently explained in terms of "reducing the
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handle” of a tree, in the jargon of translator writing formalists [FG]. In essence, a
function is applied to and replaces the deepest nodes in a tree before it is applied to
their superior nodes.

A recursive formulation of such an operation for a tree “t" may be expressed:
tf ot tp then (t tf) else (t . (f %) bu) [16]
A recursionless construct for such a form in an Algol-like language could be:

<recursionless construct> ;=
bottomup <variable> « <recursive structure>
<termination specification>
do <bottom up function body>,

Again the <variable> refers to the entire subnode within the body, predicate, and
termination function, but the structure must be a tree (unlike top down operators,
where any value which causes a sequence to be generated is acceptable). This
requirement arises simply because the operand structure must initially contain terininal
nodes; a bottom up algorithm cannot generate the structure to which it is applied; the
top down algorithm must. For example, a bottom up operation which sums the elements
at the terminal nodes of a binary tree, "t", might be written:

bottomup Tet until atom(T) whence T do T(1]+T[2].

In developing a bottom up operato- for inclusion in the basis, we proceed as with
the top down case, by defaulting the termination predicate to "atom?” and introducing a
sequence of bottom up operators or "sections”. The bottom up operator, "1*, may be *
written:

t T bu :: t atom? else (t . (" (bu tail)x) (bu 1st)) [17]
It retains the correspondence between function sequence index and tree node depth as
before. However, the last element of the sequence (corresponding to the last terminal

node) is applied first.

A recursive evaluation procedure which sums the elements at the odd depths of a
binary tree, and takes their difference at the even depths, may be written:

s sum s Ist + (s 2nd);
s diff s 1st - (s 2nd);




RECURSION 82

t sumdif = t T (<sum; diff> gen %)
For example,

<l; <2; <<3;4>; 5>>> 1 (<sum; diff> gen *)

<l; <2; <<B;4>; 5>>> . (T <diff; sum; diff..>*) sum

<1 T .5 <2 <<3;8>; 5>>1<diff; sum; diff..>> sum

£ <l; <25 <<q;d>; 5>> (T <sum; diff; sum...>x) diff> sum

<l; <2 T .5 <<B;8>; 5> 1 <sum; diff; sum..> >diff>sum

<l; <2; <<B;8>; 5> . (1 <diff; sum; diff..>%) sum>diff>sum

<l; <2; <<3;4> 1T <diff; sum; diff..>; & 1 _>sum> diff> sum

<l; <2; <<B;4> . (T <sum; diff; sum..> *) diff; 5> sum> diff> sum
<1;<2; <<8 1 ..; 4 1 ..> diff; 5> sum> diff> sum

<l; <2; <<3;4> diftf; 5> sum> diff> sum [18]
<l; <2; <3-4; 5> sum> diff> sum

1+ (2- ((3-4) + 5))

Although termination continues to be a problem, it is clearly a separable problem: both
top down and bottom up have the identical <termination part> specification in the
recursionless constructs, In particular, the "!" operator permits application of the
termination function for both operators, separably.

A more general form of bottom up operation allows the recursive traversal of the
argument tree and the subsequent possibility of retaining the original node as well as
the bottom up value at each level of recursion. The recursive form below allows the
bottom up function to be hinary:

tft tp then (t tf) else (t . (°f *) bu t) [19]

Notice that in the expression [18] the action of the bottom up function has meaning
even if the operators "sum" and "diff" had been binary. In fact, this is permitted; the
bottom up function is defined as (18] exemplifies, for binary functions. That is, the
“tree” of “"sections" defined by the bottom up form [17] is the value of the operator
when the sequence of functions consists of binary functions. A section so defined will
be referred to as a "recursive section".

To obtain the effect of {19], the bottom up function is extended to allow one of its
arguments to be a recursive section (instead of a sequence of sections). The structure
of the recursive section participates in the operation in the following way. The tree
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structure of the argument to the section must be identical to the other argument tree
(or have a terminal node where the argument tree does not). The functions are then
applied bottom up to the corresponding pairs of nodes.

For example,

<a; <b; ¢>> T (f ¥) 1 <q; <r; <g;t>>> [20]
<a; <bjc>f>f 1 <q; <r; <s; t>>> <3
<a; <bjc> f <1; <s; t>>> ¢ <q; <r; <s; t>>>

m

In one sense, the "recursive section” is the only truly recursive representation for a
"program” we have dealt with. In particular, each of the recursive operators imposes a
recursive interpretation on sequences of functions used in a recursive control context.
The recursive function, by contrast, contains the recursive structure explicitly. Later in
this chapter we deal with the significance of this structure more fully.

More general forms

The top down and bottom up operators mimic the standard notions which they
represent. Not to belie their significance when used alone, it might appear as though a
plethora of "recursionless constructs" are required to cover recursive functions in
general. That is, one might feel significantly constrained were the recursioness

operators used in lieu of recursion in the basis--much more so than with the gotoless
constructs.

We do not feel this should be so, and divert our attention to recursion in general,

momentarily, to substantiate our convictions. We are primarily interested in two
questions:

1. When is a recursive algorithm preferrable to a sequential equivalent?
2. What aspects of recursion are not captured by the recursionless operators?

To approach the first question, we notice that it is not the case that all functions
defined on recursive structures need themselves be recursive. For example, if a

sequence s is a path in a tree (a sequence of successive indices of subnodes), the
node at the end of the path in tree “t" is: b

t /(sub%. s)val

A recursive formulation is unnecessary:

- T ——— faad Ao i e L R 11 aay - = R L erpe —
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x f p it p isemptyseq then x
else (x sub (p 1st) ’f (p tail)):

The point is simply that recursive data structures do not necessarily require :ecursive
accessing functions.

The recursive implementations of " and "/" [2] demonstrate that recursive control
structures need not deal with recursive data structures. In Chapter II (p. 56) a
recursive schema was presented which was also not "essentially recursive™ however, a
brief study of that schema is in order. It may be reformulated without termination
conditions in terms of the basis as follows:

x f o x td ’f bu » [21]
This function may be written iteratively as a double accumulation:
x f : terminal-value /(bu*.(x/(tdx) reverse))val [22]

where "terminal-value” and the termination of the inner accumulation depend on the
omitted predicate and terminal functions. In essence, the reverse of the top down
accumulation is the "argument stack” sequence, which is then an argument to the bottom
up accumulation sequence.

In effect, no control information is neecded in the stack--that is, the return point
position is fixed. We therefore say the function is not "essentially” recursive. Indeed,
the recursive implementations of "" and "/" [2] are of this form, and the iterative
definition is preferred. (Both would puise the sequential arguments, but a recursive
implementation wastes "stack space” by storing a constant return point.)

Only a slight modification to the schema is required to produce an "esentially”
recursive function--one in which the bookkeeping of the return point is non-trivial and
justifies a stack implementation. Consider a recursive function whose body contains
several recursive calls:

HegLWe. T %

In fact, this form of function is "essentially" recursive, for the context of the call (the
bookkeeping of the return point) is non-trivial (it would be very difficult to do
iteratively--in fact, it would require pulsing a data structure via "push” and "pop"
primitives). These calls are either multiply recursive--i.e. f(gl(f(g2(x))))--, or they may
be executed independently, dependent on context--i.e. bu(f(tdl(x)), ... , f(tdn(x))).
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A stronger generalization would permit the recursion to occur within a loop. This
form would also be "essentially" recursive, for the bookkeeping of the loop indices at
the various levels of recursion would be non-trivial.

Both cases (excluding multiply recursive calls) require that recursion occur in some
sequence within the recursive function body. Thus, a more general recursive
form--and, indeed, an essential one, may be derived (again without termination
conditions);

x t o xtd. Cf ¥ bu x) 23]
Notice that, for td =id (the left identity function), x f is a combination of the bottom up
forms and for bu = lid (a left identity ignoring its right argument), x f is a top down

accumulation form:

xid. (Cf*xbux)zxT(busx)lx
x td. Cfxlid x)=x ! (id )

But notice particularly,

x td . Cf £ bux)=t 1 (bus)t (x!(td %) [24]

where t is a function of "xl(td%)" and the termination function--e.g.  "x l(td%)Xtf*)".
That is, the quite general recursive form [23] is equivalent to a separable application of
the top down and bottom up forms.

The "double accumulation” analog between [22] and [24] 1s particularly striking. It
is as though the top down form were an accumulaton which branches at each subnode
(forks) and bottom up is a "merging" form of accumulation (joins). Both forms are
"essentiallv” recursive, for a stack is required for the index of the loops in [12] and
{13]

Actually, more general forms involving multiple arguments and mutually recursive
functions are obtainable. In particular, if we introduce a new notation to allow multiple
arguments (in excess of two) to operators, we can demonstrate the extreme complexity
of functions which can be composed using the recursionless operators. The noteation
simply requires multiple arguments to be in brackets. Both

(aib] f ¢ :: body
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and
a f [b;c] :: body
represent three argument operators whose calling sequences are:
[actual-1; actual-2] f actual-3
and
actual-1 g [actual-2; actual-3],
respectively.
The function,
t f [td; tf; bu] =t L td ! tf T bu [25]
is equivalent to the recursive implementation:
t f [td, bu, tf] = t rf [td Lst; tf; td tail; bu) [26]
t rf [acc; tf; td; bu] =
(tf emptyseq else (td emptyseq) else (bu emptyseq))
then t
else ((t atom?) then (t (tf 1st)))

else (t . (rf [t (1d Lst) ace; tf tail; td tail; bu tail] #) (bu 1st))

This is indeed a fairly general recursive form, and the implementation of the function
does not even include the effects of escape functions in the recursive programs!

The application of corecursive operatars should not be implemented
sequentially--that is, the top down operator should not be applied to the entire tree
before proceding to apply the next top down operator, etc. In fact, the functions [26]
should be the implementation for the function [25] The "recursionless” operators are
clearly “corecursive" in the same sense as functions of sequential objects using
coapplication and accumulation are cosequential.
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A Recursive "+

Although the corecursive operators may be used to replace the recursive functions,
it is no! clear that the basis contains any "recursionless constructs” analogous to the
"gotoless operators” of the imtial basis. In particular, we can draw the following
parallels between the sequential constructs and recursive constructs:

1. Constant representation: <1;2;3> sequence and <1;<3;5>;<9;<6>;7>> tree;

2. Cosequential/Corecursive: "" & "" and "/", "V" & "1";

3. Gotoless/Recursionless: "+" and ?.

There is no obvious potentially infinite recursive form to correspond {0 the potentially
infinite sequential form, the loop.

In fact, the corecursive operators impose a recursive interpretation on sequences of
functions; the unbounded recursive elements to correspond with loops arise from using

loops on funtions which (sequences) are then interpreted recursively by the corecursive
operators.

The correspondence between the corecursive and cosequential constructs can be
emphasized much more strongly if the loop is considered to be a form of "quote"
operator. To understand such an interpretation cf the loop, consider the expression

g, <l@B>. p

It it is desired to suppress the "normal" action of cosequencing the sequence "<1;2;3>",
the loop operator is used, viz.

s . (<1;2;3>%) . p [(27]

"Quoting” is generally understood as the act of suppression of the normal interpretation,

and hence, "+" may be viewed as a "quote" operator of sorts.

Now, if the corecursive operations were modified to “coapply” two recursive
structures, instead of using the interpretation between sequences and trees imposed in
the definitions above, the notion of a recursive "quote” in the same sense as for "s"
arises. For example, in the bottom up operator discussion, it was convenient to define
a "recursive section” consisting of a sequence of binary operators applied (bottom up) |
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to a recursive data structure (see (19] and [21]). If the top down operations were
defined analogously, a recursive quote "$" could be defined which imposed the recursive
sequence structure used above. That is, to obtain the effect of:

t T (ev %)
we would have to write
tT(evx§)

to suppress attempts to interpret "evs" as a recursive form, just as "+" suppresses
attempts to interpret its argument as a sequential form.

This presents a more unified view of corecursion and cosequentiality, for now we
can consider the effect of recursive "data" structuring using the recursive quote, "§".
Previously, the interpretation of the sequence of functions was accomplished by the
corecursive operators themselves; -8, recursive interpretations of sequences were
confined to sequences of functions. With the recursive quote "$"--a true recursionless
construct--s quences of "data" can be considered. That is, we can define a function on
the recursive representation, relying less on whether it represents a program or data.

This notion represents the fringe of our understanding of the recursionless
constructs’ interactions with the language basis. Obviously, several different recursive
quotes could be considered; this might be significantly more complex than imposing a
recursive interpretation depth-wise on a sequence as has been done above. Although
future considerations of recursionlessness and corecursion should probably be based in
part on this recursive quote, the implicit (recursive) quote in the corecursive operations
should not be disregarded. Even in the initial basis, it would be quite consistent to
permit "+" to be imposed implicitly; for example, there is little reason not to permit the
implicitly quoted interpretation:

a., +. bega. (+%. b

for "+" simply does not have an interpretation as a sequence. Obviously, the explicit
use of the quote must be permitted for cases such as [27] above. There is no

ambiguity between:

<f; f> and f<1;2>

with respect to how to treat them as Operands of corecursive operations--the former
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requires the (implicit) "8", the latter does not. Hence, the formulations above of the
corecursive operations mmay ultimately be preferred; however, the notion of a recursive
"quote” should be considered for a future formulation of the basis.

Recursionlessness and structured programming

We emphasize that our considerations of recursionlessness are preliminary.
Although we are able to express significantly complex recursive functions (see [25] and
[26]), we do not feel we have more than ' of what might be
interesting and useful.

'scratched the surface'

In terms of eliminating recursion, we are not convinced that we have as strong a
case against recursion as we do against the goto. Although the potential for misuse of
recursion is at least as great as for the goto, the actual (observable) misuse is not.
This arises from wusers’ qualins over the inefficiency of using recursion at all in
programs, and in general, from confinement of recursive programming to academia (at
least in the US.). That is, if students were taught that recursion is as important and
useful as the goto, the programming dilemma might be considerably more complex.

We are thus in a positiun of being able to structure a potentially dangerous concept
before it actually becomes dangerous. Such structuring is useful in its own right--for
example, it begins to eliminate the detail arising from implementing algorithms which are
naturally expressed as "top down" or "bottom up".

Historically, would we have had to advocate eliminating the goto if news of its
existence had awaited the last few lessons of instruction in programming courses?




CHAPTER 1V

CODEPENDENT STRUCTURES

In Chapter Il it was mentioned that some programs

written in the initial language
basis were unduly complex becaus

e of their lack of a "clean functional decomposition”,
This chapter examines the nature of such programs and ultimately shows that their
concise specification hinges on the 1 of coroutines or “codependent structures",

We shall be dealing with structures which are described independently and each of
which can be thought of as being in some "state" at any given time. Such a group of
structures will be referred to as “coroutines”, although the traditional notion implies that
the "state" include a prograrm counter, which is not always necessary here. In this
chapter, we are concerned with the extent to which the independently described
structures can and should depend on the states of each other.

Coroutines in Applicative Languages

Although there are many examples of programs whose implementation is made more
efficient through the use of coroutines®, il is

somewhat more difficult to justify
coroutine control from a structured programming point of view. We are not concerned

with justifying the coroutine control present in the cosequencing and corecursive

operators, for the decomposition there is essentially functional. However, if we move

to a more general coroutine structure, 1ssues involving global variables and side-effects
emerge.

In one sense, the arg

ument for the inclusion of a coroutine mechansim is a
counter-argument

to the primary argumeit for an applicative langauge. In an
applicative language, identical expressions in the same static context have identical
values; that is, functions are well-defined in an applicative language. This allows the

programmer to depend on the preservation of relations on the environment over control
constructs such as function calls.

tFrequent reference has been made to compiler decompositions, for example.
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From a structured programming point of view, programming in an applicative
language may become dangerous because the programmer might become dependent on
such invariant relations. For example, the invariant relations may arise from the way in
which a data structure has been implemented, and assumptions based on these relations
may then become an integral part of the program. Changing the data structure would
then be impossible, even though the changes were consistent with the original
specification of the problem. That is, we must dis tinguish between apparent structure
and the implementation of that structure. In and of itself, this is actually only an
argument for a data structuring mechznism. However, it will be shown that the explicit
subordination of one structure to another required in an applicative language presents
particular problems to modifying the program structure.

To understand how this arises, and in particular, to understand how a problem can
tack a "clean functional decomposition”, a LISP 1.0 program will be rather thoroughly
dissected. LISP 1.0 is an applicatve language, and, hence, all problems require a
functional decomposition whether it be "clean” or "unclean”. The problem to be solved
by the program is intentionally unrealistic: given two lists, "def" and "s", the function
"de" below will produce a result whose elements are those of "s" except where

elements of "s" are less than "3". In those cases, the elements chosen will be
successively from the iist "det". Thus,

s=(1324);
def = (7 9)

de[def;s] = (7 3 9 4),
Two LISP functions which accomplish this are:
de[def;s] = [null[s] = NIL; (1]
' lessp[3scar[s]] = cons[car[s]; de[def;cdr[s]]);
T = Fldef; s]);

Fldef;s] = cons[car[det]; de[cdr{defJicdr[s]]};

("F" is separate for explication below; we assume "def" is of sufficient length that we
cannot run out of default values.)

First notice that the bu y of "de" is free to reference "def" in any way desired.
For example, there is no protection from using "caadr” on it. This argues for a means
of structuring "def" in the sense of constraining its accessors to a particular set of
functions--"car" and "cdr" in this case.
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Notice also that "s" and “de" are “corecursive"--each time "de" is called, "s" is
pulsed by taking its “edr”. This is not the case with "def"; however, "def" and "F" are
corecursive in the same sense. Although we might immediately imagine that a
decomposition which emphasizes this cosequentiality is possible, we first consider the
implications of allowing the element of “def" chosen to depend functionally on the

elements of "s" which are less than "3". This can be accomplished by respecifying "F*"
as:

Fldefis] = cons[f[def;car[s]); de[def;cdr(s]]]. [2]

where “t" accomplishes the functional dependency. If we were able to instantiate "def"
with "f" previous to the execution of “de", or were able to define it global to the
functions called by "de", there would be no need to pass “def" as a parameter. The
implementation below could be used.

de[def;s] = de’[s); (3]

de’[s] = [null[s] & NIL;
lessp[3; car[s]] & consfcar[s]; de[cdr[s]]};
T = Fls])k

Fls] = cons [f’[car[s]]; de[cdr[s]]]);
f'le] = f[def; e].

This implementation uses the LISP binding which permits "def" to be global to all the
functions called by "de". This is subject to the same dangers as [1]--i.e., there is no
way to confine the access of "def" to the call “f".

Now, what if "f" were to be programatically dependent on its calling sequence--that
is, what if "f{def;s]" were different dependent on the number of times it has been called
from “F"? A particular example for “f* will help to illustrate the problem. Notice that [2]
or [3] could not be used to implement [1] in which the element of "def" selected
depended on how many had previously been used. Hence, if we desire "f" to act
exactly as [1]), but additionally insist that it add the element of "s" to the element of
"def”, the need for a new programming device arises.

What is frequently used in such a situation is an encoding device--the value of "f"
must be encoded with the updated state of the computation which we desire for "f". In
this case, the updated state will be the “cdr[def]". Thus, we can accomplish the effect
by defining F (in scheme [1]) as:
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Fldefis] = cons [car[f[deficar[s]]]}
defcdr([f[def;s]Jicdr[s]]

f(def;e] = cons [add[car[def]e]; cdr[def]],

This decomposition is what is meant by an “unclean functional decomposition” to a
problem. In essence, we have a program "{" which produces a sequence of values
depending on "def" and an argument sequence of "e"s. However, the program "f" is
considered entirely subordinate to “de", and its state must be continually passed around
as a parameter.

If this subordinance were important from a structured programming point of view,
then the above functional decomposition ([4] with [1]) is to be preferred. However,
from the statement of the problem, there is no reason to prefer implementation [4] to
one like [3]. To be precise, even if """ had the side effect that the “cdr[def]" replaced
"def ~-which would enable us to define [4] more concisely as [3)--there would be no
effect on the relationships to be considered in "de",

The only objection to [3] is that the global variable "def" is accessible by "de". If
there is a way to specify the existence of two programs--each with its own state
variables--and |imit their references to each other to a functional interface, this
objection is removed. This is almost an exact definition of "module” according to Parnas
[PA), and the theory surrounding his work has a definite bearing on the coroutine
facilities about to be introduced into the basis. It is also consistent with the efforts
toward constraining global variable usage [WS].

It is particularly interesting to note that the notion of side-effect--which the above
implementation introduces--can be independent of “assignment”. That is, no notion of
assignment ever enters the basis--yet codependent structures introduce the notion of
side-effect.

Our approach to the inclusion of coroutines in the basis ic as follows. First, the
coroutine nature of the cosequencing operators is examined, and operators are
developed to introduce more general coroutine facilities, which are presented next.
Finally, some implications of coroutines to data structuring are discussed, ‘ollowed by a
brief discussion of the implementation of the basis in terms of coroutines.

As in Chapter lIII, it should be emphasized that the operators presented in this
chapter are tentative. We are more interested in explaining the desired effects than in
proposing a concrete syntax for their specification.  Also, the reader should be
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forewarned that the operators introduced in this chapter do not produce expressions
which are significantly more concise than corresponding Algol programs, for example.
This effect arises from the more primitive nature of the coroutine operators themselves;
effectively, they introduce the ability to explicitly pulse sequential structures. Much
has been made of the lack of such a requirement in the basis to this point; here we
examine where the ability to pulse structures is desirable, if only to define and study
higher-level cosequencing and corecursive operators.

Some Remarks on Names

A brief digression is now in order. The basis operations generally tend not to
impose special interpretations on names, but the facilities presented in this chapter rely
on names to a much greater extent. In particular, none of the operators in the basis at
this point is defined with a name as a required argument, nor does any defined operator
give a preferred interpretation to a particular name as, for example, the for construct in
Algol gives preferential treatment to the control variable.

This lack of reliance on names for semantics is intentional. Any construct requiring
a name increases the number of names temporarily introduced by the programmer--a
phenomenon the "operator" notion avoids (see Chapter I). Also, scope issues are
frequently very complex, and when semantics can be specified without their
involvement, a description is often simplified immensely. We advise this language
design technique: defer issues of names as long as pessible.

We do not, however, deny the language enhancement that names can and do
provide. In particular, the escape operators should be extended to allow named control
context escapes, and such are included in the final basis (WU,1972).  Also, where
temporary functions are required--as occurs frequently with accumulations--scope
control such as block structure should be permitted to localize the definitions and
possibly even control variables or named accumulators. However, the lack of such
facilities has been a very effective aid to simplifying the presentation of the basis to
this point.

In the operators presented below, names cannot be ignored as easily~-in fact, some
of the operators would be needlessly complex without reliance on names. This does
not reflect a change in philosophy, but rather a concession to the more primitive nature
of the coroutine operators.
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Cosequencing Reexamined: Partial Cosequentiality

By way of introduction to coroutines, the cosequencing operators "." and "/" are
reexamined. In particular, notice that in the expression "data . program”, the data is
cosequential with the program. Also, the result is cosequential with both the program
and the data. That is, not only does "." idenhfy dala element "i* with program element
"i", but also the value of "." is a sequence whose "ith" ele ment can be identified with the
“ith" element of the data or program sequence. There are programs in which one such
cosequential identification can be made but not the other two (i.e. program with data,
program with result or data with result). They are considered separately below:

1. Non-cosequential result: the emit operator

An example in which the program is cosequential with the data but not with the
result is the "mask” operation; the nonempty elements of the argument sequence make
up the result sequence of the "mask" operation (see Chapter Il or Appendix III). If the
implementation does not rely on "<> gen" (see discussion, Chapter 11), the function must
be written using an accumulation:

s tf x it x then (s conc <x>) else s; [5]
s mask i <> [ (tf . s) val;

In this implementation of the mask function, no element of the masked sequence can be
produced until the entire argument sequence (s) has been generated (by virtue of the
val operation). Unless the implementation is exceedingly clever and notices that the
resu.t sequence only changes by appending, an unbounded argument cannot be 1ised.
Even then, the semantics of val should ensure that the sequence terminates; i.e., the
expression "1 x val" should be undefined.

However, it is clear that in a simple scan across the sequence an element could be
output (entered into the result sequence of "mask") whenever it is nonempty. The emit
operator is defined to accomplish this, and actually constitutes an ability to "pulse" the
output sequence, or to explicitly "generate” elements one at a time. The operator
outputs its (left) argument as an element of the result sequence for the innermost
sequential expression in which it is embedded. The mask function above [5] can then
be rewritten:

x theni f :: x then (x f); (6]
s mask i:s . (the~f emit %)
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Then,

<1; nil; 3> mask

= the sequence emitted from

<1 then (1 emit); nil then (nil emit); 3 then (3 emit)>
<1; 3>

Only emitted values constitute the result of a sequence expression containing an emit.
The expression value of the emit is its argument.

The introduction of an emit operator which requires a name as operand is
particularly useful, and motivates the second operator of this sectior. The named emit

operaior--emitn--hinges on the notion of an "emittor-collector” expression, which is of
the formt:

emittor-expression : [ collector-name); collector-name;; )

The emitn operator requires a collector name as its right operand, and simply emits its

left operand to the named collector. (Its value in the expression, as with emit, is its left
operand.)

A collector is simply a named entity which accumulates the elements emitted to it in
a sequence. The emmitor-collector expression (hereafter abbreviated "EC") defines a
result which is a set of named sequences. An element of the collected sequence set
may be selected by name as though the name were an operator; eg.,

exp : [a;b] a = sequence emitted to "a".

This may be clarified if one thinks of a set of associations specified:

[name) :: valuey; name; :: valuey; ...

)

Specifying any name after the set selects the value associated with that name in the
set: viz,

tActually this is a simplified version of the emittor-collector expression. It will be
embellished throughout this chapter.
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Thus, the emittor-collector expression potentially has a set as its value.

The following example defines an operator "eo" which produces an EC whose

collectors have the even- and odd-indexed elements of a sequence "s" as collectors
named "even" and "odd":

s eo = s. (<emitn >dd;emitn even> gen ) : [even; odd}; (7]

<1;1;2;3> eo odd

= sequence emitted to "odd" in
<1-1;2;3> . <emitn odd; emitn even; emitn odd; ...> : [even; odd]
«l; 2>

m

The EC expression is especially useful when several functions share a common complex
control structure. It also represents the beginning of an association mechanism which
is of significance to the concept of “structured data”, discussed later in this chapter.
The collector portion of ECs is generalized presently.

2. Non-cosequential operand: the collect operator

The emit operator was introduced to permit program and data cosequentiality,
without requiring either to be cosequential with the result. The collect operator, to be
introduced presently, facilitates writing programs which have cosequential program and
result, but not cosequentiality of data and program or data and result. The accumulate
operator is already of this form: only the program and resuit are cosequential.
Frequently, functions are written which "pulse" an input sequence--the accumulated
argument. This pulsing is in terms of "lst” and "tail" in much the same way as LISP
functions use “"car" and “cdr" (see Chapter Il and [1]-[4] above). Here the ability to :
explicitly pulse a codependent sequence is introduced. ]

The problem used to explicate the "unclean decomposition" (see [1]) is now reused
to introduce the semantics of the emit operato:. In particular assume that a sequence
called "def" is to be used to replace elements which are smaller than "3" in a sequence

s” by a function named "de". This may be written in the initial basis:

i f a:<athenielse (i+!);
a else ("def sub i)>;

def de s u <l; nil> / (Ist f %, (s . (ge 3 %)) . (2nd%) (8]
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The reader need not understand the particulars of this function, but in essence, the
accumulation keeps track of the index of the defaults sequence to be used in the event
of an empty element in s. Thus,

<100; 200> def <3; 1; 4; 2>
would produce the accumulation:
<<1;3>; <2;<100;200> sub 1>; <2;4>; <3; <100;200> sub 2>>.

The selector ". 2nd " then produces the result: <3; 100; 4; 200>, In effect, the
accumulation "pulses” the default sequence (by incrementing the index used for
selection). The collect operator permits the ability to pulse an argument sequence
directly.

The collect operator is introduced as an extension to the EC expression above.
Instead of a set of collector names, a simple collector expression is permitted, in
conjunction with an emittor expression which uses the emit operator (and not the emitn
operator). In addition, any sequence may be used to stand for an emittor which emits
that sequence. For example, the function "de" [8] may be rewritten:

def de s :: def : (s . (ge 3 else collect %)) [9]

The value of the collect operator is the element pulsed from the emittor. The value of
an EC of this form is the sequence to the right of the ™", Thus,

<100; 200> def <3; 1; 4; 2>

<100; 200> : (<3; 1; 4; 2> . {ge 3 else collect *))
<100; 200> : <3; collect; 4; collect>
g <3; 100; 4; 200>,

Once again, the introduction of an interpretation reliant on names is useful. The
emitior expression is now permitted to be a set of named emittors; again none of the
emittors may reference named collectors. Such a set is specified:

[emittor-name1 : emittor-expression;
emittor-name2 :: emittor-expression; ...]

Then the collectn operator is introduced to selectively "pulse" the emittors by name.
Its value is the pulsed element,
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To illustrate, the following EC interleaves the elements of two sequences into one:
s interleave p :: [ss; pup] : (<collect s; collect p> gen *)

Assuming a collector expression terminates if it attempts to collect a terminated emittor,
| the above function will produce:

<1;2> interleave <3;4> [10]

=[s::<1;2>; p:<3;8>] : <collectn s; collectn p;; ..>
= <];3;2;:4>.

It is important to ncte that the collector expression is controlling the pulsing of the
emittors, and not vice versa. That is, this construct should not be confused with that of
several languages which permit a loop driven by an emittor (generator) [SC). (The
initial basis permits this latter facility quite easily.)

To summarize, the emit operator has been introduced in order to permit
cosequentiality of program with data, without insisting on the cosequentiality of either
with the result. This capability corresponds directly to the notion of a generator or
"pulsed” output. Similarly, the collect facility was introduced in order to permit
cosequentiality of result with program, but not insist on the cosequentiality of either
with the data. Analogously, this facility provides "pulsed” input from a generator.

We are about to proceed to a discussion of 2 more general coroutine facility. It will
be useful to have the emittor /collector expressions summarized syntactically in BNF*++:

<emittor-collector> ::=<simple emittor-collector>
/<join emittor-collector>
/<fork emittor-collector>

<simple emittor-collector> ::= <unnamed-collector emittor-expression> :
<unnamed-emittor collector-expression> [11]

A quote problem becomes quite pronounced here: do the collects occur before the
looped expansion or not? For now, assume not,

T+The notation <x>-list is used to indicate a list of <x>s separated by semicolons.
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<join emittor-collector> ::= <emittor-set> : <named-emittor collector-expression>
<fork emittor-collector> :::= <named-collector emittor-expression> : <collector-set>
<emittor-set> ::= [<emittor association>-list]

<emittor association> = <name> i <unnamed-collector emittor-expression>
<collector set> ::= [<name>-list]

Where the "unnamed" expressions (e.g. <unnamed-collector emittor-expression>)
contain neither collectn or emitn (in <unnamed-emittor..> and <unnamed-collector>
respectively), and the "named" expressions contain only those constructs. To reiterate,
any expression producing a sequence may be uzed as an <unnamed-collector
emittor-cxpression> and the value of an EC is either a set of named sequences or the
collector expression. Of course, ECs are simply expressions, and may be used in any
context where an expression may be used.

Codependency

The emit and collect operations quite clearly require a coroutine structure for their
implementation. In this section the relationship of these operations to a more general
coroutine facility is discussed. It will be shown that the operations are not fully
adequate for expressing programs which do not admit a clean functional decomposition;
in particular, the nature of "codependent” structures is examined more closely.

The emit and collect facilities do permit a cleaner decomposition than does the
coresponding expression in the initial basis; they aiways eliminate an extra accumulated
variablet. For example, compare [4] and [5] or [8] and [9). Thi;s results from the
factoring of the state of the non-cosequential sequence from the primary sequence
(result from program and data in emit and data from prograri and result in collect).
Although definitions of "coroutine" vary, they share the separation of states of
processes as one aspect of coroutine control. It must be emphasized that coroutine
execution is a sequential process; although the states of coroutines are separate they
depend functionally on the sequence in which they invoke each other. In this sense,
the emit and collect facilities define "codependent" expressions.
*In the initial basis, a sequence is frequently used as the accumulated value in an
accumulation. This sequence is often of fixed length, and the various elements of it are
selected, much as variables in a program. See [5] and [8).



CODEPENDENT STRUCTURES 101

The distinction between a fuiction call and a call to collect a value is extremely
important. A function will be a constant; the collected value will not (in general).
Neither codependent function can change the other’s value; they can merely cause each
to "change" their own value, by producing another sequence element.

The distinction between a fully general coroutine facility and the collect/emit facility
lies in the extent to which the collected sequence can depend functionally on its calling
sequence. A general coroutine facility permits this dependence to be parameteric. To
explain such functional cudependence the Bliss coroutine mechanism is examined
briefly.

In Bliss the ability to create coroutines (named "A" and "B" here) is provided. The
precise syntax and mechanism used for the creation is not relevant. In essence, the
ability to associate a control/data space (stack and program counter) with the named
coroutines is provided. Assume that control resides in "A". Then a coroutine call,
"exchange jump" (abbreviated exch), consists of an argument and the name "B":

arg exch B [12]

much as the eniit operation is used above. However, the value of the expression [12] is
not "arg" as with emitn, but rather an argument to the exchange (in "B") which causes
the return to "A",

For example,
coroutine A(al) = begin local t; t<(al+2) exch B end [13]
coroutine B(b2) = begin local p; pebl; pe(bl+1) exch A end

abstracts the Bliss facility for coroutine declarations. The parameters "al” and "b1" are
the initial parameters to the coroutines--the parameter of the first function call or
exchange jump. They are undefined after the first exchange jump from within the
body. Assume the coroutine can be invoked by the body of the block in which these
coroutines are defined. Then the call "A(5)" will cause "A" to begin execution, with "5"
as the value of "al". "A" will immediately exchange jump to "B, as though a call of

*In Bliss, the coroutine facility was introduced as an effect difficult to obtain without
using the goto. The synopsis here is actually a modification of a much more general
facility than is presented. Liberties have been taken with the syntax as well
-[WU,1970,1972].
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"B(5+2)" were made. Control begins in "B", with "b1" equal to "7". After it is stored
in "p", the exchange is made back to "A", with the paramet:r "7+1". Evecution resumes
in "A" at the point of exchange to "B", with the value of t'ie exchange expression as "€".
Control then returns from "A" to the calling program. The final state of the local

variables is:

It the original call had been "B(5)" (instead of "A(5)") the state of the variables would
have been:

p = 8, t = undefined.
Control would never return to the exchange in "A" in this case.

The point is simply that the coroutines depend functionally on each other--there is
no input/output identification to be made. "A" appears as a function to "B", and "B"
hikewise to "A". Each coroutine presumes its task is primary and the coroutines it calls
are auxilliary to it.

Examples of the utility of such a conceptualization are most often complex, for at
least two non-trivial tasks must be dependent on each other, yet of distinct utility when
standing alone. However, a conversational (interactive) language provides a nice
environment in which such a conceptualization is enlightening. Consider two interactive
chess-playing programs "W" and "B". A user with two terminals could play the
programs against one another by allowing "W" the first move. He could enter "W™s

response as his first move to "B". "B™s response could then be entered to "W", etc.

The user should feel quite trivial--he is acting precisely as an exchange jumpt.
Each program presumes the other to be its input function. Thus, if the two programs
had been written with exchange jumps, and adequate naming facilities were aval:ble to
make this dynamic connection [KR], the programs would have been "more general” in the
sense that this frequently interesting activity was made easier for the programmer,
Ths also establishes the activity of the human player (with either program) as a
coroutine in nature. The implications to conversational system design are beyond the
scope of this work; minimally, facilities to separate the user’s "state" from the executing
TActually the record of the moves is typed out to the user; hence, an intermediate
coroutine would be required if anyone were interested in the progress of the game.
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coroutines are necessary.

Coroutines can be introduced into the basis by extending the emitter-collector
expressions to allow emitters to collect and collectors to emit. Taking the simple case
first, <simple emittor-collector> in [11], each expression may contain unnamed emits and
collects. For example,

x exch :: <x emit; collect> val; [14]
x f i x gt 2 else (x exch);
defaults deff s :: defaults . (sub collect emit x) : (s . f )

defines a function "deff" which produces the sequence "s", (a subset of the positive

s" are less than or equal to "2", elements from

an array "defaults” are chosen. The elements from "s" which are chosen depend

functionally on the value of the element in "s", and the number of defaults chosen to
that point. (See [4))

integers), except where the elements of

In particular,
<<100;101>;<200;201>> deff <3;1;4;2> [15]

£ <<]100;101> sub collect emit; <200;201> sub collect emit> :
<3;< 1 emit; collect> val; 4; <2 emit; collect> val >

Assume control begins at the collector in the EC--ie. to the right of the ":". Then "1"
will be emitted to the left expression. This causes the left expression to begin
evaluation and when the first collect 1s reached, its value will be "1". Using "7" for
"program counters” or sequencer positicas, the ¢valuation state at this point is:

<<100;101> sub 1 # emit; <200;201> sub collect emit> :
<3; <1 7; collect> val; 4; <2 emit; collect> val>

The "#" is the program (control) sequence position. Evaluaticn proceeds, producing
"100 emit" as the first element of the emittor expression. Control now changes back to
the collector expression with an emitted value of the next collect in the collector
expression. The evaluation of the collector side proceeds until its next emit, at which
time the state of the computation will be:

<100 7; <200;201> sub collect emit> :
<3; 100; 4; <2 emit; # collect> val>
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Control resumes in the emittor expresssion until the collect is done, and the result "201"
is computed (<200;201> sub 2 = 201):

<100; 201 # emit> : <3; 100; 4; <2; 7 collect> val>

The emittor’s emit then causes control to resume in the collecter, the value emitted by
the collector is "201", and the sequence terminates. The value of lhe EC is the
coltected expression, and, hence, the value is :

<3;100;4;201>,

The simple coroutine expression above does permit the definition of functionally
codependent structures. Although the emittor-collector relationship prevails--i.e. the
collector is the value of the expresion--the subordinance of the emittor is not evident
from an examination of the emittor-expression standing alone. For example, if the
emittor and colicstor are interchanged in “"def.” [15], the value of the collector (the
previous emittor) is "<100;201>",

If both sequences were of potential interest, both expressions would have to be
specified ([15] and [15] with emittor and collector interchanged). In order to permit
the use of both sequences without such recomputation the <fork emitter-collector> of
[11] is extended. The <collector set> is expanded to allow a list of named coroutine
expressions (which use unnamed colleet and emit operators). The "<named-collector
emittor-expression” may both collectn and emitn to the r2med coroutine expressions,
and the result of such an expression is the association set of named coroutine

expres:ions.

For example,

q = <collectn a emitn b; collectn b emith a> * : [16]
[a :: <B; 1 exch; 4; 2 exch>;
b:: <<100;101> sub collect emit; <200,201> sub collect emit>]

has the value:
[a :: <3;100;4;201>; b <100;201>]
and the selectors "a" and "b" may be used functionally:

<3;100;4;201>;
<101}; 201>,

qa
gb
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In [16], the reader will recognize the expressions involved in the explications of [15]
above. A description of the evaluation process analogous to that provided for [15] is
presented in Appendix VI.

To complete the coroutine facilities, the <join emittor-collector> is extended to
permit a coroutine set as the emittor portion of the expression. Again the elements of
the emittor set expressions must use (unnamed) emits; we extend the facility by
permitting (unnamed) collects in those expressions. This permits the controlling
mechanism--the collector--to produce the value. For example, if the collector and
emitter are interchanged in [16], the value of the expression will be the sequence of
pairs:

<<l; 100>, <2;201>>

This introduces a flexibility into the language which is relevant to the works of
Krutar [KR] and Parnas [PA)*. The ability to define named entities--coroutines, emittors
and collectors--permits a dynamic linkage similar to that proposed in Krutar’s work.
Such a flexibility is consistent with the work of Parnas, but is not quite as general a
facility as we presume he would desire.

To return to the introductory example of this chapter and the nature of "unclean
functional decomposition”, notice in particular how difficult the effect of [16] would be
to obtain in an applicative language. To obtain the "defaults" subsequence,
"<100;201>", the entire function would have to be rewritten. In the basis, we merely
modify the order of the coroutines, or put them into "sets",

Before proceeding to a discussion of "data structures" and their relationships to
coroutin:s, some mention of the lack of an explicit exch operator as the unique
coroutine mechansim is warranted. Needless to say, the proposed mechanism is more
general in that exch can be implemented in terms of collect and emit. Qur reluctance to
base the mechanism on exch involves initialization problems (parameters "al® and "bl"
in [13]). Our scheme allows the definition of coroutines which are of the nature of
emittors--by using (..emit..collect..)--or of the nature of collectors--by using
(..collect..emit...). That is, the former is able to emit (once) independent of any collected
data, the latter is not. (Naturally, by using conditional facilities, more complex
expressions can be built which are not so easily classified.) We do not have enough

tThese works are not easily related; however, they are both concerned with the ability
to replace "modules” easily. This is the sense of relevance intended.
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experience with the facilities to propose either as strictly preferrable from a language
design viewpoint.

Data Structuring via Coroutines

The relationship of our concept of "data structures” to coroutines is extreme. To
understand how the relationship arises, consider "conventional® data structures, such as
arrays, lists, cyclic lists, stacks, etc. Each imposes a set of relat onships onto the
elements of the structure. The structure essentially translates into a set of accessing

functions for items so structured, which can be used by the program (see [WU,1971)
and [WG)).

The design of some data structures is such that a particular set of accessing
sequences is assumed. In particular, a stack implementation enforces that the length of
the sequence of pops dcne to the stack never exceeds the length of the sequence of
pushes. The implementation of a FORTRAN array assumes that the accessing sequence
is sufficiently random to warrant such a general structure (or that the combined effects
of the structure’s accessing sequences is best implemented with such a general
structure). The implementation of lists presumes access will be to successive elements.

If we move to more modern data structures such as sparse arrays, paged arrays,
files described as data structures, etc, such assumptions become even more
pronounced. In fact, the nature of accessors for such structures requires a
specification of how the accessor is being used. For example, in a sparse array "A",
distinct accessors must be used in the expressions:

A[3,4,5] < 0 and A[3,4,5] « 234.
Thus the accessing sequence is important to a data structure representation.

Going even farther, intended accessing sequences for the data structures arising in
very complex programs such as operating systems, compilers and interpreters, become
even more apparent from their conceptual (pictoral, verbal presentation) description.
However, their description in terms of their implementation becomes complicated
because of the inability to map different accessing sequences onto a group of elements
to form a structure Instead, more primitive successor relationships must be imposed.
In particular, either the relationships are imposed by a primitive pointer structure, or
they are specified to a limited extent as a heirarchical entity and the program imposes
the relationships whose specification is precluced by the enforcer of this hierarchy--be
it a type mechanism cr an applicative language.
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The coroutine facilities are the beginnings of a structure mechanism which admits
multiple (possibly complex) mappings onto - data structure. For example, a
doubly-linked list may be used because it is casirable to sequence through the list in
either direction. This may be expressed:

s prefix y  <y; s gen>;

s dblylnk :: s . (emitn forward emitn reverse %) :
[forward?; reverse::<>/(prefix collect ) val};

We may then define:
DIR :: <N; E; S; W; N> dblyink

Then reference to "DIR reverse" will cause the creation of the reversed sequence.
Naturally, a compiler is free to determine the implementation of such a structure, which
might be a vector in this case, but would differ drastically if "dblylnk™s argument is a
magnetic tape file.

In the same vein, the coroutine primitives can be used to study and express
structures which are modified by insertion, deletion, and assignment. Knowledge of the
use of functions such as insert and delete not only affects the implementation of a daia
structure, but our conceptualization of the structure as an array, string, list, etc. The
major reason the coroutine primitives are helpful in this area ic that in the initial basis
such considerations may be expressed in terms of gentf, which may in turn be
implemented using emit:

s conc q i: <s gen; q gen>
e<s. (emitnL ) q. (emitnL x)>:[L]L

tln light of the expanded emmitor-collector notation, this is an abbreviation for “forward
: collect *".

tiActually, gen is not an essential function in the following sense: for a potentially
unbounded sequence "s", a function "s genf i" can be defined which produces "s" with
its "ith" element gened, which does not depend on gen itself. See Appendix VIII.
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sgenx=s . (emitnl # x: L)L

where "L" is a unique label.

For example, “insert", "delete", and “assign" may be expressed (in terms of a fixed

sequence, "s"):

i assign y i i-1 head s conc <y> conc (i rest s);
Iinsert y i i-1 head s conc <y> conc (i-1 rest s);
i delete i i-1 head s conc (i rest s);

where

irest s v . (i head (id *) conc (emitn L #)): [L] L

We do not propose including these functions as primitives in the language. The basis to
this point has demonstrated the ¢xtent to which we do not need assignment. It is much
more important that the uses of incert and delete be approached in terms of the more
general effect which they are used to accomplish. That is, we are not able to
categorize the need for assignment yet; considerably more work is required in the
direction of determining where we do not need it.

Orthogonal Issues

As we described in Chapter I, the language basis we developed was a priori
constrained to attempting to describe the nested-sequential representation subspace of
interesting programming structures. Aithough the remainder of the (semantic
representation) space may be besl described as the "nested parallel” space--with
orthogonal elements of sets, association mechanisms, parallel operations, type
mechanisms, name spaces, etc.--it would be inaccurate to say that nested sequential
structures can be best described without the use of elements from this orthogonal
space. For example, the selection gotoless construct case is semanticaly a parallel
structure: retrieving an association from a set. However, it is very desirable to use this
construct to express sequential program elements.

In the basis (as in LISP) this construct must be simulated by associating numbers
with the elements of the set. Furthermore, the associated numbers are constrained to
an initial sequence of the positive integers. Then we are able to count to the
appropriate element by running through the sequence. However, it is actually
semantically important that the distinct:on between a set and a sequence be delineated
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in future studies of the basis. (The specification that a program or data is a sequence
may indicate that selection of an element from the sequence is not germane.)

Although the parallel space is conceptually orthogonal to the sequential space, many
direct analogies from the language basis apply--even within the corecursive operators.
Several examples may help to illustrate the point. In a discussion in Chapter I
("cosequencing operators”), the distinction of the coapply operator as a sequential
operaior was stressed, for the sequence could terminate at any point and could be
unbounded. However, if the termination characteristics of the arguments to coapply are
known in advance, the coapplication can occur in parallel. In fact, the compilation
considerations of Appendix IV a.e appropriate in this domain, for we may even
determine rather complex functions which can be applied in parallel using the same
technique.

At a more primitive level, the emit and collect operators discussed above are quite
similar to operations which spawn processes and wait for processes, respectively. In
fact, any time an emit is encountered, the computation can "fork" (until a collect is
encountered); any time the coliect operator is encountered, the computation can “join".

Of course, the combined effects of parallel, sequential and nested representations is
more complex than any in isolation. For example, sequences may conceptually change
to sets for a parallel operation and back to sequential for output. More complex effects
like the ability to map a sequence of nar.cs onto a sequence of values to produce a set
of associations obvinusly parallel the semantics of coapplication, but are currently
outside its domrin. The recursionless constructs are potentially paraliei each time a
sequence of recursions must occur--i.e. everything described using the coapp'ication
operator has a potentially parallel implementation given the proper constraints on the
sequences. Thus, in effect the basis even at this stage is amenable to parallel
implementation considerations; however, it lacks the means to express explicitly parallel
effects.  This is a deficiency, for the knowledge of parallel vs. sequential
implementation drastically affects the algorithm chosen (parallel versions of good
sequential algorithms may be less efficient than parallel versions of inefficient
sequential algorithms).

The basis has been pushed to the point where orthogonal aspects (parallelism)
should begin to be considered. For example, the recursionless constructs will be aided
significantly by a type mechanism (for implicit termination) and an association
mechanism. The lack of even a simple association mechanism for accumulated elements,
for example, will probably thwart compilation efforts (or at ieast misdirect them) to
some extent (see Appendix V for an example of how the lack of such a mechanism
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affects program conciseness adversely). Many attempts to program in the basis are
made more difficult than is necessary because of the lack of even simple association and
type mechanisms; however, defining them would have clouded the icsues we wished to
emphasize and would necessarily have bee~ incomplete.

We emphasize: leaving out even simple orthogonal basis eiements is an effective
means for focussing on the issues at hand. We recommend this approach {o language
design.

Implementation issues

One of the primary reasons the coroutine primitives have been introduced is to
move one level closer to an implementation. In particular, if one is able to refer to the
most recently emitted value as "lastn", we can program both "." and "/" in terms of the
coroutine primitives;

s. q:[al ::s; a2 q): (collectn al (collectn a2) x);
v /s [fs i8] <v (collectn fs) emitn acc;
lastn acc (collectn fs) emitn acc *> : [acc] acc

Notice, then that the emittor set is effectively a declaration of new instances of the
generator for the seauence to the right of the ":"s. This can normally be implemented
very trivially in terms of a set of variables, a "program counter” and a pointer to the
genaerating expression.

The above considerations might lead to an interpretive implementation, However,
such an implementation is not necessary; some compilation considerations are given in
Appendix IV. Although the details of those considerations are not important here, the
fact that "." and "/" are operators defined in the language is important. In particular, an
extensible language definition might prefer a "kernel" definition, which has the coroutine
primitives as primitive and from which one may build "" and "/". The compilation
considerations of Appendix IV are based on compiler knowledge of these particular
operators and their relationships. That is, by defining a language "basis”, we define not
only the primitive operators but some of the operators which can be extended from a
kernel, but which will be of obvious utility both conceptually and in implementation
considerations. To define a language from the basis, the same step should be taken:
more operators must be defined in terms of the coroutine primitives and "." and "1" (and
recursion and “corecursive operators"). Ultimately, we may be able to eliminate the
primitive coroutine facilities and provide the most useful effects of coroutines, using
“coroutineless" operators.
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CHAPTER V
CONCLUSIONS AND FUTURE DIRECTIONS

Several new ideas have been presented in this dissertation; each has caused the
coining of a new phrase such as "recursionless construct”, "cosequencing operator”,
"factored termination”, or “implicit generation”. In this chapter, we examine the extent
of innovation represented by these ideas. We then present an overview of the extent
to which the basis reorients our concept of control and data structures. Next the
limitaticns of the language basis are considered, followed by some directions for future
research along these lines. Finally, we consider the basis in the context of the order of
magnitude criterion, discussed in Chapter 1.

Innovation
Below we review the new ideas independently, then discuss their combined effects:
1. A pointerless representation

Explicit pointers in control or data structures are difficult to deal with in every
approach to programming, principally because they vastly expand the relationships
within and between data and control structures. That the gotoless constructs
eliminate pointers from cortrol structures suggested their potential utility for
eliminating pointers from data structures as well. Although analogies beiween
data structures and gotoless con'rol structures have been drawn previously
[HO,1968], the new idea in our wori is to app'y the gotoless constructs to a
particular representation (nested sequences) independent of the elements of the
representation. We then allow elements to be either programs or data. The most
obvious benefit of this approach is to allow the explicit sequential representation
of data structures without requiring explicit pointers to represent nested elements
and cycles in the structures.

2. Operators relating data and control

AlthoLgh LISP 1.0 allows the interpretation of pairs as sequences (lists), programs
must explicitly "pulse" lists by using the "car" and “cdr" functions to impose a
sequential interpretation. On the other hand, APL operators operate on
structured data without explicit reference to the elements of the operand
structures by imposing an element-by-element correspondence between operands.
Such operators are defined to act in paraliel on the elements of their operands;
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element-by-element identification between sequential operands could be made.
The "cosequencing" operators relate sequences in such a fashion, again
independent of the elements of the representation. Thus, they tend to emphasize
the extent to which data sequences follow the structure of the programs that use
! them, or equivalently, the extent to which control structures follow the data
structures on which they operate. In essence, by providing a common interpreter
for all structures in the language basis, the necessity to "pulse” data structures is

lessened and operators which incorporate necessarily sequential effects are
definable.

; we sought sequential analogies that emphasized the exter! to which an

3. The partiziiy instanvated function ("section™)

The ability to describe cosequential activity hinges on the partially instantiated
tunction--a function with only part of its argument list specified. The “section"
generalizes such diverse programming objects as machine language instructions,
Bliss data structures, and Simula new activities, none of which can be strictly
classified as program or data. Its contribution to concise program specification
arises because it allows some specific information to be hound, while leaving other
information unbour).  The “section” has been defined previously as a
programming language construct [LR]. Several languages have a similar notation
for implicit iterative control (FORTRAN IV, APL, PL/1), but do not permit the
1 “section” in its full generality. Hence, we include it here as "innovative" to

emphasize its importance as an idea which should be incorporated directly into
existing programming languages.

4. Infinite sequence generation

The ability to define and operate on conceptually infinite sequences is the most
obvious novelty in the language basis. Terminating a sequence external to its
specification permits the effect. This idea is not new to data structures, where a
pointer back tc a previous element in a sequence may be interpreted by the
program as a cycle. However, such a mechanism in programs is new'.

==l TRl Sglsliel Sl ElE B R B S o S e

tits utility relies significantly on the ability of a program to “represent" its result as
distinct from "constructing” its result.
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Programming experience with the basis has shown that the process of going
from mathematical formulations of algorithms--in terms of polynomials, infinite
series, etc.--to algorithms in the basis is aided significantly by the ability to
represent unbounded sequences. From a more formal mathematical viewpoint, this
is the first language in which it s possible to deal with the
recursively-ennumerable sets directly.

5. Elimination of recursion

Any recursive language which permits the definition of functionals--functions with
functions as arguments--has the facility for expressing what we have termed
“recursionless constructs”: operators which apply a function argument to other
arguments recursively. For example, "maplist" in LISP applies a function to each
of the elements of a list recursively.

The innovation in this work is (1) in identifying that such functions as "maplist"
eliminate the need for explicit recursion in some cases, (2) in postulating that a
“covering set" of such operators may exist which would ultimately permit the
removal of all explicit recursion from languages, and (3) in providing examples of
some rather powerful "recursionless constructs” which can be used in extant
higher level languages. Although it may not be necessary to remove recursion
from languages, it is important that we identify how recursion is and should be
used, and then designate that activity with a language construct.

6. Correspondence between recursive data structure and control structure

Although the "recursionless constructs" we propose do not "cover" the common
uses of recursion completely, we were able to show that recursive analogs to the
“cosequential” operators can be defined and integrated int» the language basis.
The analogy is direct in the sense that "corecursive" operators were defined
which emphasize the extent to which recursive data structures follow the
recursive control structure of the functions which operate on them, or
alternatively, the extent to which recursive functions follow the recursive data
structures on which they opera‘e. Although we were able to identify some quite
powerful “corecursive operatos", we are not convinced th-t they are fully
adequate for the expression of desirable recursive effects. However, the
indications are strong that the apsroach will be fruitful.
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7. Effects of subroutines in applicative languages

The demonstration that coroutines can exist in a langauage without an assignment
statement is innovative. That is, coroutines may be defined as an association of a
“state” and a computation in that state, functionally dependent on other
coroutines. The basis provides a method for expressing independent states and a
method for relating them functionally. By allowing the effects of coroutines in an
applicative language, we preserve the important equivalence property of
applicative languages: identical expressions in the same static context have the
same value.

None of the above ideas is extremely significant in isolation; the innovation of the
basis derives principally from the ability of the above ideas in combination to reorient
our approacl to programming. In terms of traditional programming structures, the
impact of the above ideas in combination is twofold:

l. By extending the representation traditionally used for control
structures to data structures, we extend the implicit data structure
representation.  Although these data structures can be imposed
explicitly by programs using data pointers or array subscripts, their
implicit representation is significant to p-ogram conciseness.

2. Traditional data structures are accessed element-by-element by
programs. Thus, the explicit dynamic relationships between a program
and its data structures are very primitive. By emphasizing the
relationship of sequences of accesses o/ data structures to the
programs which perform the access, we have begun to structure the
dynamic relationships between data anc program. The operators
accomplishing this dynamic structure are thus able to replace the

traditional mechanisms for accomplishing these effects--namely,
subroutines.

The primary languages which influenced the design of the basis were Bliss, APL, and
LISP (in that order of importance). Their influence only becomes apparent after
experience with programming in the basis. Relationships to other languages are
similarly masked because of the reorientation of programming style the basis demands.
The reorientation is not solely dependent on the absence of an assignment operator, but
rather involves the necessity to recast forn ulations of programs to emphasize close
correspondences between program and data s‘ructures. One quickly becomes cognizant
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ol the extent to which the implementation of a sequence as a program or data depends
on the context of the use of the sequence. Implicitly, one then recognizes the utility of
specifying sequences independent of the context of their use. The basis forces one to
re~tructure his approach to programming to emphasize the commonality of data
structures and control structures and their relationships.  This is the most
important/innovative aspect of the basis, and it results from the combination of tne
ideas above.

Limitations

The limitations of the basis (.s developed in this thesis) arise from two areas:
aspects of programming languages orthogonal to nested-sequential representation, and
reformulation issues in terms of applicative languages and nested sequences in general.

1. The orthogonal elements of the basis

The language basis was a priori constrained to describing interesting programming
structures, through the use of nested-sequential structures only. We may characterize
the remainder of the (semantic representation) space as the "unordered" or “"parallelism"
space, with orthogonal elements: sets, association mechanisms, narallel operations, type
mechanisms, name spaces, etc. It s quite c'ear that the descripiion of even
nested-sequential structures is aided by elements from this spacet. The basis has been
pushed to the point where the interactions between parallelism and sequentiality should
begin to be studied.

The basis is presently able to simulate parallel activity, but simulation of effects
Obtained easily in another representation indicates poor design when that
representation is naturally implementable. For example, simulating sub is unrealistic, if
a sequence can be recast as a parallel construct amenable to random access. An
apparent alternative is to seek parallel implementation techniques for activities which
are described as sequential. This is not a reasonable approach, for the choice of
parallel vs. sequential implementation drastically affects the algorithm chosen for any
particular task--parallel versions of efficient sequential algorithms are frequently less
tThe case gotoless construct is actually an element from this space, and is not present
in the basis.




CONCLUSIONS AND FUTURE DIRECTIONS 116

efficient (of time) than paralle! versions of inefficient sequential algorithms.

To summarize, by leaving out considerations of parallel structure description, we
have approached the extent to which sequential activity can be described solely in
terms of itself. We do not suggest that parallel description is unimportant, even for
sequential representations.

2. Limitations of nested-sequential representation

Naturally, forced sequential or recursive simulation of effects aciieved best in a
parallel representation--as through the use of sets or APL arrays--is not considered a
limitation of this work. An adequate language basis must include the orthogonal
elements mentioned above. Of more concern is the limitation of the pointerless
representation for obtaining effects normally obtained using pointers.

We are faced with a problem in using the pointerless representation for data.
Sometimes data must reflect a "real world" structure which may simply not be amenable
to treatment as (potentially infinitely nested, cyclic) nested-sequences. Certain graphs
cannot be adequately represented in this way, for example, and there are occasions
when we do not have the freedom to impose the artificial gotoless representation.
Although we have confidence in the "gotoless” constructs in control contexts, based on
both formal and practical experience, we await future research along the lines
developed above to establish a similar empirical base for the gotoless constructs appliec
to data structures.

Although many problems arising from the lack of an assignment statement are
properly part of the paralielism domain (random access, for example), we cannot yet
claim that all uses of assignment in traditional languages are preferably reformulated in
the basis. The coroutine primitives may be used to study the extent to which we can
define constructs which give the effects of assignment such as modification of data
structures. We f-el that more work in discovering such coroutineless constructs is
required before the necessity for assignment can be characterized effectively.

Future Research

Work of this nature is successful solely to the extent that it is able to stimulate
future research: we have not in any sense attacked a problem and solved it, but have
rather presented a set of ideas and indicated how they are interrelated. The work is
sO open-ended that we hesitiate to eliminate any subfield of computer science as a
candidate for its further development. However, there are three major areas which
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should pay attention to the ideas presented herein: language design, formal
programming studies {program verification, structured programming, and formal
semantics specification), and implementation studies (optimization and machine design).

The impact of this work on language design may take some time to emerge; the
ideas in the basis are not easily factored from the basis in a manner directly applicable
to improving existing languages. As we have mentioned, the "section" and the
recursionless constructs may be useful in such a context, but it should be clear that
existing languages must be sigrificantly reformulated to incorporate riost of the ideas in
the basis.

The principal stimulation this work can provide to language design is to demonstrate
that a fundamental reformulation of languages may be in order. Although we have
spent significant effort demonstrating the evolution of the elements of the basis from
conventional concepts, the impact of the basis is that it is fundamentally different from
other languages. Continued research along the line of reasoning followed in the
development of the basis is necessary: what other “coroutineless" constructs--both
sequential and recursive--are desirable, what formulation of the parallelism space is
appropriate, how do data structures, name spaces, type mechanisms, etc., impact the
work? There are a large number of questions that only researchers with considerable
programming experience can answer, dealing with the aptness of new constructs which
should enter the basis. That is why the presentation has been so obviously informal
and directed to the language design audience specifically.

This work may have considerable impact as a formal semantics specification
language (after it is extended and formalized). Formal semantics should be specified as
concisely as possible. They should also require as little “conceptual interpretation” as
possible. The only <istinction between the best programming language and the best
tformal semantics lznguage should be that the semantics language is higher-level. It is
considerably more difticuit to specity how something should be built up than to
demonstrate how it is a special case of something more general about which
considerable knowledge has already been accumulated.

The impact of the basis on program verification and other formal approaches to
programming should be considered. The techniques of Gerhart [GR] in verification
studies of APL are probably more appropriate in this context than those of King [KI]
and Hoare [HOL In particular, one does not arrive at algorithms in the basis as easily
by modifying variables in an invariant relation as he does deriving the algorithm directly
from a mathematical model involving sequences. (See Appendix IV for an example of
this phenomenon.) In fact, it is almost as difficult to understand the transformation of &
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traditional gotoless language algorithm into an algorithm in the basis, as it is to
understand the analogous transformation from assembler language into a higher-level
language.

Finally, implementation of the basis looks extremely interesting as a futiure research
effort. The primary language from which the basis was derived was Bliss--it is very
likely that compilation of programs in the basis is not too difficult. Naturally, by
interpreting a representation as opposed to interpreting programs or data, we open the
area of internal representation of programs and data--by the same token, we unify the
approach. We strongly suggest the approach of Hansen [HA] to implementing the basis,
optimizing only when necessary and only to the extent necessary. The ultimate goal of
every language designer is to produce a machine for which the language is the machine
language. Efforts in machine design such as the STAR VI [HT] are very promising as a
technology for such an implementation.

Obviously, by defining an (unnamed) language basis, we are not interested in
controlling the future research from the basis (although we would certainly be
interested in hearing of any such efforts). We are particularly uninterested in defining
a sequence of (upward compatible) 'anguages from the basis, but encourage any
reformulation appropriate to the reseach at hand. It is a rare opportunity for those
interested in optimization efforts to be permitted to reorient a language to facilitate
their effort--here is a basis for one.

Order of Magnitude Improvement

In Chapter 1 considerable attention was paid to finding an order of magnitude
improvement in general purpose programming languages. Our only claim is that we feel
a language derived from the basis may attain such a distinction. The lack of an
association mechanism and other "parallelism space” desirables prevents a concrete
demonstration of the claim. We can only summarize that the basis is presently
significantly more concise than Algol for a larger class of problems than is APL, but it is
not as concise as APL for the problems for which APL is particularly well-suited. This
conciseness relies on the build-up of a considerable library of useful functions;
however, we are far better able to rely on such a traditionally difficult entity because
of our ability to represent infinite sequences and to deal wiih programs and data
uniformly. Implementation does not appear to be a difficult task--for some programs in
the language basis, efficiency can be commensurate with that of current languages.

In the last twelve years of language design research, the order-of-magnitude
criterion has not been met for general purpose programming languages by pushing

e Al o .
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traditional language constructs. We feel it will only be met by making both the
programmer and the implementation aware of higer-leve! relationships between program
and data structures, and by emphasizing these relationships with language constructs
facilitating their concise expression and efficient compilation.  Expressing such
relationships demands that we step outside traditional language structures. We believe
that the basis represents a significant step in this direction.
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INSTANTIATION, COMPOQSITION AND EVALUATION NOTES

Instantiation rule: For b a binary operator and x an operand:
a. x b stands for the operator deiined by:
none op y ::x b y;
b. b x stands for the operator defined by:
yop:ybux;
¢. x by stands for the instantiation: x (b y).
Composition rule: If b, | and r are binary, left-unary, and right-unary operators,
respectively:
a. bl stands for the binary operator defined by:
xopyuxb(ly)
b. r b stands for the binary operator defined by:
Xopy:uxrby;
C. ryrz stands for the right-unary operator defined by:
X 0piXryry
d. | I2 stands for the left-unary operator defined by:
none op y :: |; (I y).

The resulting operators are then subject to the composition rules. No other
combinatiion of operators is a composition (see next section).
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Extensions to the composition rule:

The composition rules above explicitly disallow compositions of the forms: "b r", "
Y% "r 1" "l ¢ and " b" In fact, the first two forms have reasonable

interpretations--namely that the unary operator be applied after the operation and
Parameters be bound as though the unary operator were not present. That is, the
above composition rules could be extended to permit:
e. b r stands for the binary operator defined by:
Xopyuxbyr;
f. 1 b stands for the binary operator defined by:
xopyul(xby).

The forms "r 1", " r* and "o b"

expression from either side,
error,

could be used to allow parameters to enter the
but is rejected as nonintuitive and presently considered in

Impact of evaluation function on composition rules

Reference is made in Chapter II to the ambiguity of permitting:

+% == <+ 45 .2
but not allowing:
+ (mul 3),

Indeed, the composition rule (e.) above would permit this latter operation, but the result

would be inconsistent with that of "++" This points up the fact that an evaluation

function will determine when the composition rules are to be invoked and when an
operator can be applied to another operator directly.

Quote rules and the ability to define "functionals”

(functions which permit functions
as arguments) are normally used to resolve such

an ambiguity. In the text, the

= - e e
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"patterned expansion" of the functions has been used to convey the intended choice.
Quote rules always cause problems when several levels of quoting occur. We see no
solution to this problem, but do make the followinz "noles":

I

3.

Permitting the ability to quote an argument at the operator definiton site is
desirable. For example, assume ™" preceeding an argument name in an operator
definition (to the left of the ":") indicatez that wh2n the operator is called, the
corresponding actual parameter may be an unevaluated function. Assume also
that ™" in an expression inhibits evaluaticn of a function, and indicates that the
argument is to be considered "data"--ie. cirects the evaluation function to apply
the function instead of compose the two. Then the distributed usage of the
function throughout the program does not require that the argument-function be
quoted in each instance. le.,

'afbub. (a%)
does not require
(.o+fbl. fb2.. ’mulfb3.. etc)
but rather permits the same effect using
(.. +fbl.. -fb2.. mulfb3.. etc.)
The designers of LISP recognized this whrn defining "setq" for example, but did

not permit the user to define such functions.

The ability of an operator to quote its argument may be inferred from its usage
in its defining expression (by an interpreter or compiler). In the example above,

given that "+" can quote its argument, it is rcdundant to specify the fact explicitly
using the ™",

The "+" is already a form of quote operator (see Chapter III: A rocursive "+".)
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NOTES ON THE MULTIVALUED-LOGIC OPERATORS

In Chapter 11 it was indicated that the operators then, else and excludes have
somewhat anomalous properties. These stem from the interpretation of any non-nil
value as "true" and nil as "false". In particular, if D is the (a) domain of the logic
operators, and O the set of such operators (called connectives), then for no o in O is
] there an element t in D - {nil} such that: nil o nil = t.

We first consider such a logic for the demain {0,1}, where "0" is an abbreviation for

} nil. The set of connectives for this domain is ...led 0% they are ennumerated in Table
AlLl below.

o in Ot null and X-y lid y-x rid xor or

X y

B B teccedecemccssse B semmsrese o aeezes
0 1 0 0 0 0 1 1 1

1 0 0 0 1 1 0 0 1

1 1 0 i 0 1 0 1

TABLE All.1: Restricted Boolean Connectives, 0.
Notice the absence of the “exotic" connectives such ~¢ nand and nor.

We can now define the logic system of the basis as the set of binary mappings o in
O from D x D into D subject to the following constraints:

1. For all oin O, ril o nil = nil;

2. Forallx,yinD,xoyisin {nil x, y}

tlid is the binary left identity function, rid is the binary right identity function, and the |

operator "-" is actually "monus”.
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3. For each o in O, there must be an 0’ in O’ such that the mapping b defined by

b(x)=1 if x is in D - {nil}
=0 if x = nil,

is a homomorphism. That is:
b(x 0 y* = b(x) 0* bly).
These latter two constraints remove domain dependencies from the connectives. In
particular, (2) eliminates a connective which maps (x,nil) onto y, and (3) eiiminates

connectives which map (x,nil) onto x but (y,nil) onto nil (for x,y in D-{nil}). The table
below represents all such connectivest (with "0" substituted for nil):

X y Cennectives
0 vy Y o o o o 0O v vy vy y y y
X 0 0 0 0 X X X 0 0 0 X X X
X y 0 X y 0 X y 0 X y 0 X y
Ref. « 1 2 3 4 5 6 7 8 9 10 11 12
Partitions cme memeeeee T E TR cmm memeeeee mmm eemeeee-
namestt  null and X-y lid y =X rid xor or

Converses 1 3 2 7 9 8 4 6 5 10 12 11

S0 fFk e @S s a@EEEE e m = SEsA

+To be precise we would have to define a homomorphism from an arbitrary D onto {x, v,
nil}, etc.

t*The homomorphism b induces a partition on 0. In particular, 0 and pin O are in the

same partition iff for all x, y in D, b(x 0 y) =b(x p y). The corresponding element of O’
is given here as a name for the partition.
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Completeness Properties

This logic system has
connectives

well formed

some rather interesting "completeness properties”. A set of
» S, will be called complete iff each connective o in 0 can be writ

ten as a
expression in terms of x, y and the elements of §.

The preperties of interest here are:

1. {excludes, else} s a complete set of connectives;
2. There is no complete unitary set of connectives;
3. {excludes, then} is not a complete set of connectives,

In Chapter 1] the correspondences between excludes and not, then and and, and else
and or were made. Thus, the properties (2) and (3) may seem somewha! startling, in
terms of regular Boolean logic. The proofs of these properties are sketched below.

Proof Sketches

1.

{excludes, else} is a complete set of connectives,

Pf.  First notice that we need not concern ourselves with converses (simultaneously

substitute x for y and y for x in an expression to obtain the converse of the
connective which the expression defines). Also note that the left and right
identities, lid and rid, respe tively, can be obtained directly (e.g. for "exp lid y"
substitute "exp"). Hence, we need only construct the c
numbers (in Table AIL2) of 1,3, 6 and 10;

onnectives with reference

x (1) y = x excludes x;
x (3)y = (x excludes y) excludes ¥;

X (6) y = ((x excludes y) excludes y) else x;
X (10) y = (y excludes x) else (x excludes y).
QED

There is no complete unitary set of connectives.

Pf. Assume there is, ard assume the set is {c}.
connective ¢’ must be such that {c’}
partition of which ¢ is a member in Ta
subset of O

Then the corresponding Boolean
is a complete set for 0’ (¢’ is the label of the
ble AlL2). In fact, there is no complete unitary
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None of the following sets is complete: { - , null, lid, rid, and}, {xor, null, lid, rid},
{or}. Hence, no proper subsct of these <nts is complete. Since each of the
connectives appears in at least one of thuse sets,no unitary set is complete. (The
sets arise from generating all expressions involving “-", xor, and or, respectively.)
Hence, there is no complete unitary subset of 0.

QED

3. The set {then, excludes} is not complete.

Pf. The proof of property 1 expresses then in terms of excludes (alcne). This set
is complete, therefore, iff {excludes} is complete, which it is not, by property 2.

QED
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USEFUL FUNCTIONS DEFINED IN THE TEXT

Note: many of these functions can be simplified to be defined in terms of other useful,
more primitive functions. We do not propose this set as a well-integrated set of
tunctions, but include the list merely for reference from within the text. If an
operator is redefined, each version appears here, in the order of redefinition in
the text. Most operators which are used only in a very local context in the text

are not redefined here.
Function Page Defined
and :: then 35
x alternate y = <x; y> gen * 36
M Bmask :: M . (controls (1%) %) 54
s conc p :: <s gen; p gen> 34
s controls q s . (rid %) . q 39
s controls g :: s length It (q length) excludes (s controls q) 44
s controls q :: s controls (g lengthge (s length)) 44
s controls q = s . (rid %) . (q conc (nil %)) 45
M column i :: M. (sub i %) 51
s €0 : s. (<emitn odd;emitn even> gen #) : [even; odd] 97
x exch :: <x emit; collect> val 103
M fromnil == M . (. (else NIL %) %) 53
M fromNIL = M . (. ( ne NIL %) %) 54
n factorial :: 1/(mul * . (n pos)) val 59
n head s :: n gt O then (n pos controls s) else <> 42
x id & x 27
uip v = u rowmul v sigma 51
s interleave p :: [sus; pup) : <collect s; collect p> gen * 99
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s length :: s controls P val else 0 44
s lengthge i :: i pos controls s length = 1 then s 44
imaxj::igejelsej 48
MMMN =M. (MN % 51
s mask i s . (thenf emit x) 95
{ none not x : x excludes true 35
s nonempty :: s ., (exs %) 40
: v notempties :: v . (ixs *) val then v 52
X null :: <> gen 63
or i else 35
k odd :: k mod 2 = | 57
P Of(+1%) 41
n pos :: P while ( le n) 42
s prefix y = <y> conc s 57
s prefix y i <y; s gen> 107
! xridy =y 27
srplus pis.(+13).p 39
urowmul v i u. (mul %) . v 51
reMMsrip s, (M transpose) 51
s reverse u <>/ (prefix % . s) val 57
fs reduce s :: fs functionzero / (fs . s) 77
fs reduce s :: / (fs . s) 78
fs reduce s = fs st / (fs tail . s) 78
s sub i :: i head s val 43
u sigma = 0 / (++ . u) val : 51
M transpose = M column & . P 51
M transpose :: M column . P while notempties 52
M transpose :: M fromnil transpose fromNIL 54
M transpose :: M Bmask transpose controls (M column *. P) 55
list tail = list . <null; id = gen> 63
x thenf f :: x then (x f) 95
x whenf f :: x f then x (Appendix V)
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s while f :: s . (f exs %) 42

list 1st :: list . <id> val 63
list 2nd :: list . <null; id> val

\Appendix V)
list 3rd :: list . <null; null; id> val (Appendix V)




APPENDIX IV

COMPILING EXPRESSIONS IN THE INITIAL BASIS

To indicate that we are indeed very cerious about the basis as a realistic approach
to programming, the following section indicate. how compilation is possible for some
expressions in the basis. A fairly complex example ic worked out in considerable detail,
producing a very efficient program {which could seem unlikely to one who is seeing the
basis for the first time).

To illustrate, Knuth’s "Algorithm A" for computing x raised to the power n (originally
Legendre’s algorithm) [KN, pp. 399-400] is compiled. A few words about the algorithm
and formulation in the basis are in order before the compilation process is indicated.
The algorithm essentially arises from the equivalence: (using "t" to indicate
exponentiation here)

XxTnexT(dy+2d,+4d3+... +(21G-1)) d})
=(xTd)((xT2)Tdp) .. ((xT(21(-1))1dy)

where the "d|" are the coefficients in the binary expansion of "n",
When d;=0, the term in the product abovc is "1". That is,
(xT@TkNT0=1
and
xT@TKNDT1=x1(21k).

Thus, the algorithm simply involves computing factors involving successive squares of

X .

To represent the algorithm in the basis, we first note that the squared powers of
"x" are:

X squared :: x mul x;
X power2 : <x; x/ (squared %) gen> [1]

The binary coefficients i.n right-to-left order can be obtained:
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n bincoef :: <n; n/(div 2 %) gen> while (ne 0) . {mod 2 %)
The factors to be multiplied can be written:

x factore« n = n bincoef . (=0 then 1 else *) . (x power2)
Thus, the algorithm for "xTn" can be written:

x tothe n i 1/(mul * . (x factors n)) val (4]

In compiling programs in the intial basis we deal with three separate program
representations; the source, an intermediate representation which we call "generator
expressions” and the target language, here a dialect of Bliss [(Wy,1972].

Generator expressions will be objects from which we can “"collect” a value. The
objects will be triples:

G=[[LDED

(The double brackets are used to avoid confusion with the coroutine set notation of
Chapter IV.) A generator is such that a program counter or sequence position counter
can be associated with it. The portions of the generator are:

L(G) = label set;
D(G) = declaration/ initialization set;
E(G) = generating expression.

The label set arises from escapes in sequences expressions. In translating from the
basis to generator notation, several levels of sequencing operations will be merged--i.e.,
the escaped sequence would become ambiguous unless we tied it to a unique label. The
declaration sets arise from "accumulate” operations where a temporary variable must be
declared to accumulate the result. The expressions, E, will be quite similar to
expressions in the basis defined solely in terms of the primitive functions, except they
will involve the declared variables of the "declaration/initialization set”, and assignment,

€,

We will be concerned with when we can translate a generator expression into either
a subroutine with own variables--ie. a coroutine--and when we are able to convert
the expression to a closed function with local variables. Below we introduce rules used
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to transform sequence expressions from the initial basis into the intermediate generator
notation from which either subroutines or functions can be compiled.

Tlie & ==>[[ {L}; cycle e'])

where L is a unique label, and e’ has all exs expressions redefined as exsn L.
L need only be defined when such an exit exists in e.

T2: [[ L; O; cycle E]]. [[ L% D; eycie E']] ==>
([ L union L’ D union D'; cycle (E enl

T3: x / [[ L; D; eycle E]] ==>
[[ L; D union {declare v = x}; cycle (vev(EN]]

where v is a unique name, not in the program,
Ta: ([[ L D; €]) ==> [[ L; D; (E)])

The transformations are to be applied "inside out" and "left to right" to expressions in
the initial basis. They transform primitive functions (arithmetic, relational, conditional)
and expressions composed only of primitive functions intact.

We now consider the compilation of the "xtn" algorithm above. However, to

circumvent issues involving the gen operator, we redefine "power2" and "bincoef" in the
following somewhat artificial way ¥

x power2 : x sqrt / (squared :) 5]
x bincoef :: 2 mul n / (div 2 %) [6]
while (ne 0) . (mod 2 %)

tNote, we can replace <v; v/(fs) gen> by "v (f inverse)/ (f*)" when "f" has a unique
inverse. In general, we can replace it by: "<liv>/(2nd/<id;*>#).(1st£)". This latter
expression corresponds to the normal nasty situation where a side-effect must occur,
but the previous value of the changed variable is desired after the assignment.

P T
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We begin by applying the transformations above to the subfunctions of [4].
x pwer2 :: x sqrt/(squareds)

T1 ==> x sqrt/[[;;cycle squared]]
T3 ==> [[; {declare Z=x sart}; cycle (Z~Z(squared))]] 2

n bincoef :: 2 mul n/(div 2%).((ne 0) exsx).(mod 2%)

T1 ==>2 mul n/[[;;cycle div 2]](ne O exsx).(mod 2%)
T3 ==> [[; {declare N=2 mul n}; cycle (NeN(div 2))]].
(ne O exs *).(mod 2 ¥)
T1 ==>[[; {declare N=2 mul n}; cycle (N«N(div 2))]].
[[{DONE}; cycle (ne O exsn DONE)]] .(mod 2 %)
T1 ==>[[; {declare N=2 mul n}; cycle (N<N(div 2))].
[[{DONE}; cycle (ne O exsn DONE)]] .
[[;; cycle (mod 2 %)]]
T2 ==> [[{DONE}; {declare N=2 mul n};
cycle ((N<N(div 2)) (ne O exsn DONE))]].
[[;; cycle (mod 2 %)]]
T2 ==> [[{DONE}; {declare N=2 mul n};
cycle ( ((N<N(div 2)) (ne O exsn DONE)) (mod 2) )]] (8]

Note also that we can transform "(=0 then | else *)" by "T1" to:
([icycle (=0 then 1 else)]] [9]
We can then do "factors" using [7], [8], and [9):
x factors n :: [8). [9]. [7]
T2 ==> [[{DONE}; {declare N=2 mul n};
cycle ( ( ((N~N(div 2)) (ne O exsn DONE)) (mod 2))

(=0 then 1 else) )1] .
[[; {declare Z=x sqrt}; cycle (Z~Z(squared))]]

T2 ==> [[ {done};
{declare n=2 mul n; declare Z=x sqrt};
cycle ((({((NeN(div 2)Xne O exsn DONE)}mod 2))
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(=0 then | else))
(ZeZ(squared)) ))

Now, using (10] in [4] we can transform the exponentiation function:

x tothe n :: 1/(mul . [10]) val

T1 ==> 1/([[;; cycle mul]]. [10)) val
T4,72 ==> 1/ [[ {DONE}
{declare n=2 mul n; declare Z=x sgrt};
cycle (mul ((N-N(div 2))(ne O exsn DONE))mod 2))
(=0 then 1 else))
(ZeZ(squared)) )]] val
T3 ==> [[ {DONE};
{declare n=2 mul n; declare Z=x sqrt; declare Y=]};
cycle (YeY( (mul (((NeN(div 2))(ne O exsn DONE))
(mod 2)}(=0 then ] else))
(Z«Z(squared)) ) )]] val

Using the instantiation rules of Appendix I, we can remove pa:entheses to obtain:

x tothe n :: [[ {DONE};

{declare N=2 mul n; declare Z=x sqrt; declare Y=]}
cycle YeY mul

(((NeN div 2) ne 0 exsn DONE mod 2)=0
then |

else (Z~(Z squared))) ]] val

program for "x tothe n",
Knuth’s version of the algorithm.) Notice
expression) could be “pulsed" if there were occasion to do so,
from the generator expression translating declare into own in
the val operation indicates that the variables of the generator
and hence, that {nhe declares can be local declarations

in Bliss.
above program into a Bliss program almost trivially:

The expression inside the cycle should look at least reasonably close to a

[11]

(12]

"real"

(The names of the variables are consistent with those used in
that the computation sequence (cycled
by producing a program
Bliss or Algol.
are temporary in nature
We can convert the

However,
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routine tothe(x,n) =
begin

local N=2  n, Z=sqrt(.x), Y=1;

label DONE;

DONE : while true do

Yey % if
(if (Ne.N/2) eq O

then leave DONE
else .N mod 2 eq 0)

then 1
else (Z«.7 x .7);
oY
end;

[Note: in Bliss, "." takes the contents from a machine address, which declarations
associate with declared variables. The leave expression escapes from the expression
labelled by its argument. The value of a block is the last expression in the block--"Y"
in this case.)

Although this expression is not optimal, normal optimization will transform the
multiplication so it only occurs on odd values of “N". Bliss will even do a right shift for
the divide and a mask operation for the test.

The expressions for the initial values of X and Z are discomforting. We claim
(without proof) that they could be hanndled in a better way by using the somewhat
obscure formulation in the footnote above, or, in fact, by the proper considerations of
gen,

We will not present any more compilation issues here: the above discussion is
intended to indicate that we do not feel that the basis is even as unrealistic as LISP in
terms of compiling efficient programs. Some efficient programs can be compiled with an
almost trivial amount of optimization effort.

Our considerations are far from complete; the mechanism above may have to be
modified drastically to accomodate the other operations in the basis. In addition, we
have ignored issues of parameter substitution mechanisms (used implicitly in the
transformed expression above), data structure creation, nested loops, etc. Such
considerations should await a formalization of the basis: both formalization and
compilation constitute significant research efforts in themselves.
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However, one point is extremely important: the compilation considerations above are
possible only because ™" and "/" have been identified as primitive coroutineless
constructs. had they been extended from "collect” and "emit" as is suggested in
Chapter IV, optinizers might have missed the transformations above and not compiled as
efficient programs. The analogy is direct between “coroutineless” and "gotoless"
programs: each presents a set of constructs whose interrelationships can be considered
by implementers to produce well optimized programs. If the constructs are not
present, the optimizer is unable to confine his attention to the most frequent functional
usage of the goto or coroutine call. He will probably not be able to focus on the
specific cases above because of the interference of the uses of the primitive constructs.
That is, he must recognize the use of "" and "/" by "pattern match", insure other
coroutine calls do not interfere, and then apply the transformations.
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APPENDIX V

COMPUTATIONAL COMPLETENESS OF THE INITIAL BASIS

Computability

In order to prove that the inijal basis (described in Chapter 1) is computationally
complete, we show that an arbitrary Turing Machine can be implemented using the basis.
Thus, in particular, a universal Turing Machine can be simulated, and th. partial

recursive functions are computable in the basis. The terminology follows Hopcroft and
Ullman [HU].

A Turing Machine is a finite state device with a semi-infinite tape on which symbols
from an alphabet, GAMMA, can be written and from which they can be read. The set of
states will be called, K. A Turing Machine instruction, called a "move", determines the
next configuration of the machine by specifying:

1. The next state;

2. The symbol to be written on the current position of the tape (under the
read/write head);

3. The direction the tape must be moved--left, L, or right, R.

A move depends on the current symbol under the tape head and the current state.
A program (set of moves) must be specified by a function,

delta: K x GAMMA --> K x (GAMMA-{B}) x {L, R}

where B (blank) is the symbol in any tape position not yet scanned (read) by the
machine. A computation proceeds one move at a time, untii a state in the final state set,

F (a subset of K), is reached. The non-blank portion of the tape is the result of the
computation.

Initially, a machine is started in state 4o, with a sequence of symbols Ay, Ay, .., A,

on the tape. The head is positioned at the leftmost symbol (A1) and the remajnder of
the tape is blank (all Bs).

To implement a Turing Machine in the basis, the function delta, the initial state qo,
the final state set F and the argument sequence A must be provided. (These latter two
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sets are specified as sequences in the basis with the same names--i.e. F and A.) We

define an intantaneous description of the computation (similar to Hopcroft and Ullman’s
“TM configuration") as the following sequence:

‘current state--"q";

<Tape to the left of the head, reversed--"LH",
Symbol under the head--"h";
Tape to the right of the head--"RH">>

: Thus, if the machine is in <tate "b", the tape has the symbols “xyzpgBB..", and the
head is positioned on "z", the instantaneous description is:

<b; <<y:i x>; z; <p; q: B; B; ..>>>

The various fields of an instantaneous description, ID, may be accessed by the functions
defined Lelow:

L q = ast; h i 2nd Ist; LH :: 2nd 2nd; RH 2 2nd 3rd,

The function delta’s result is formatted®,i:

q delta g ==

<next state--"q’"; written symbol--"g™; head direction--"LorR">

where q is the current state and g is the symbol under the nead. Accessors for values
of this function are defined:

2

Q' i 1st; g’ 2nd; LorR 3 3rd.

tTechnically we must show the basis is able to express arbitrary "delta” functions. By
naming the states with positive integers, and a GAMMA of the decimal digits (union {B}),

an array of triples in the above format may be simply selected to produce the result of
delta.

t*We prove that the initial basis including ean operator definition facility is complete.

This differs from lambda-expressions [CH), for example, where a universal function may
be expressed as a closed expression in the system.
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The implementation essentially relies on a two stack machine simulation of the TM
computation. A stack is stored as a sequence, the first element of which is its "top".
The relevant operations on stacks are:

stack push x :: <x> conc stack;
stack pop :: stack tail;
stack top :: stack lst.

A "move" function which transforms one instantaneous description to the next may
then be written:

ID move :: ID q de!ta (ID h) MOVE ID
where MOVE is defined:
D !'AOVE ID ::
<D aq}
IDx. (DLlorR ="L"
then <LH pop; LH top; RH push (D g’)>
else <LH push (D g’); RH top; RH pop>)>
The computation sequence may then be described as:

COMP :: <q0; <<>; <A 1st else B>; A tail conc (B #)>> / (move %)

However, the above computation does not terminate. To obtain the finite
computation sequence (when there is one), the following auxilliary functions are useful:

x isnotins s . (= x txs %) val excludes X}
x whenf f :: x f then x.

The terminating computation sequence is then simply:
COMP’ :: COMP while (whenf (q isnotin F))
To obtain the value of the computation we simply decode the last ID in COMP’;

ID decode :: ID LH reverse conc <ID g> conc (ID KH) while (ne B);
TMCOMP :: COMP’ val decode.

Q.E.D.

S
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Diagonalization

Perhaps a more interesting effect in the basis is the ability to deal with recursively
ennumerable sets directly. To demonstrate, we express a function whose value is the
dovetailed computation of all TM computations on a blank tape.

We postulate a generator for "deltas" which generates all 2-dimensional arrays of
triples conforming to the rule that the computation begin in state “1" (q0 = 1) and
terminate in state "2" (F = {2}), if it terminates. (Obviously, there is no loss of
generality here.) Call the generator for the deltas, DELTA--assume each element of
DELTA is a two-dimensional array of triples such that the first subscript (the rows)
correspond to states, and the second subscript corresponds to tape symbols from a
fixed alphabet, the decimal digits. We interpret "0" as "B" and disallow it from being
written.

Then for DEL an element of DELTA, we define:
args del DEL :: DEL sub (args Ist) sub (args 2nd)
(where args is a two element sequence <current state, current symbol>). The functional

(del DEL) then represents a valid "delta® with its arguments encoded. That is, we can
redefine "move" as:

ID move DEL :: <ID q; ID h> del DEL MOVE ID

In particular, we can now define the (blank tape) computation sequence of a Turing
Machine \n DELTA as:

BTC DEL :: <1; <<>; 0; 0%>>/ (move DEL#)
while (whenf (q ne 2))

where MOVE is as ahove.
All blank tape computations can then be described as:
ALLBTC :: BTC *+. DELTA
Obviously, we must be rather careful how we access this monster. We cannot ask for

the value of the first computation and hope to do anything with the second.
Frequently, such sequences are considered, however, and “"dovetailing" is used to
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describe a desired effect. If we arrange the computations in the following way, it will
be clear how such a process works:

<<Cy1; Cy2; C13; Cy45 . >;
<nil; C21; Ca2; C23i ... >
<nil; nil; C3y; C32; ... >;

The empty elements have been introduced as "place holders" for the dovetailing
process. Dovetailing involves taking the columns of the doubly infinite array described
above (ALLBTC), until an empty element is encountered in the column. Equivalently, we
can take one element from column 1, 2 elements from column 2, 3 from 3, etc. Thus, we
can define a dovetail function for any two dimensional infinite array as:

none convert A :: <0; P gen>. (head (nil ) ). (conc ). A
A DOVETAIL :: P. (head *). (convert A)
(remember transpose works for such arrays; must check that "0 head s == <>")
The dovetailed blank tape computations are then:
ALLBTC DOVETAIL
Noticing that the dovetailed array’s rows increase in length for each successive row,

and that nil will be the value after a computation halts, we cun ennumerate the index in
DELTA of the machines that halt (redundantly, here) by "HALTING" below:

row halt :: row . (excludes *). P mask
HALTING :: ALBTC DOVETAIL . (halt gen %)
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COROUTINE CONTROL EXAMPLE

Below, the evaluation sequence for the coroutine expression [IV, 12} is presented. The
symbol "7" represents the current sequencer position in each of the coroutines. The
"#" indicates the current “program counter”, the point at which control actually resides
(see [IV, 11] ff.). Assume control is initiated at "b" as would occur if that sequence

were explicitly selected.

<collectn a emitn b; collectn b emitn a> * :
[a :: <3; <] emit; collect> val; 4; <2 emit; collect> val>;
b :: <# <100;101> sub collect emit; <200,201> sub collect emit>]

<collectn a emitn b; collectn b emitn a> # :
[a : <B; <1 emit; collect> val; 4; <2 emit; collect> val>;
b i <<100;101> sub # collect emit; <200;201> sub collect emit>]

< # collectn a emitn b; collectn b emitn a> * :
[a 2 <35 <1 emit; collect> val; 4; <2 emit; collect> val>;
b :: < <]00;101> sub 7 collect emit; <200;201> sub collect emit>]

<collectn 7 a emitn b; collectn b emitn a> # :
[a :: <# 3; <] emit; collect> val; 4; <2 emit; collect> val>;
b i < <100;101> sub 7 collect emit; <200;201> sub collect emit>]

<collectn 7 a emitn b; collectn b emitn a> ¢ :
[a :: <3; <1 # emit; collect> val; 4; <2 emit; collect> val>;
b :: < <100;101> sub 7 collect emit; <200;201> sub collect emit>]

<collectn a # (= 1) emitn b; collectn b emitn a> * :
[a i <B; <1 7; collect> val; 4; <2 emit; collect> val>;
b :: < <100;101> sub 7 collect emit; <200;201> sub collect emit>]

<collectn a emitn # b; collectn b emitn a> + :
[a :: <B; <1 7 emit; collect> val; 4; <2 emit; collect> val>;
b :: < <100;101> sub 7 collect emit; <200;201> sub collect emit>)

<collectn a emitn 7 b; collectn b emitn a> ¢ .
[a i1 <B; <1 7 emit; collect> val; 4; <2 emit; collect> val>;
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b :: < <100;101> sub collect # (= 1) emit; <200;201> sub collect emit>]

<collectn a emitn 7 b; collectn b emitn a> # :
[a = <B; <1 7 emit; collect> val; 4; <2 emit; collect> val>;
b :: <100 7; <200;201> sub collect emit>]

<collectn a emitn b; collectn b # (= 100) emitn a> * :
[a :: <3; <1 7 emit; collect> val; 4; <2 emit; collect> val>;
b :: <100 7; <200;201> sub collect emit>]

<collectn a emitn b; collectn b emitn # (= 100) a> x :
[a 2 <B; <1 7 emit; collect> val; 4; <2 emit; collect> val>;
b 1 <100 7; <200;201> sub collect emit>)

<collectn a emitn b; collectn b emitn 7 (= 100) a> # :
[a :: <3; <1 emit; collect # (= 100)> val; 4; <2 emit; collect> val>;
b :: <100 7; <200;201> sub collect enit>]

<collectn a emitn b; collectn b emitn 7 (= 100) a> * :
[a :: <3; 100; 4; <2 & emit; collect> val>;
b : <100 7; <200;201> sub collect emit>]

<collectn # (= 2) a emitn b; collectn b emitn a> x :
[a :: <B; 1005 4; <2 7 ; collect> val>;
b :: <100 7; <200;201> sub collect emit>]

<collectn a emitn # (= 2) b; collectn b emitn a> * :
[a :: <3; 100; 4; <2 7 ; collect> val>;
b :: <100 7; <200;201> sub collect emit>]

<collectn a emitn 7 (= 2) b; collectn b emitn a> * : (1]
[a :: <3; 100; 4; <2 7 ; collect> val>;
b :: <100 #; <200;201> sub collect emit>]

<collectn a emitn 7 (= 2) b; collectn b emitn a> # :
[a :: <3; 100; 4; <2 7 ; collect> val>;
b :: <100; <200;201> sub collect # (= 2) emit>]

<collectn a emitn 7 (= 2) b; collectn b emitn a> « :
[a :: <3; 100; &4; <2 7 ; collect> val>;
b :: <100;201 emit #>]
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<collectn a emitn b; collectn # (=201) b emitn a> x :
(a :: <B; 1005 4; <2 7 ; collect> val>;
b :: <100;201 7 >]

<collectn a emitn b; collectn b emitn # (= 201) a>  :
[a = <3; 100; 4; <2 7 ; collect> val>;
b :: <100;201 7 >)]

<collectn a emitn b; collectn b emitn 7 (= 201) a> * :
(a :: <B; 1005 4; <2 # ; collect> val>;
b :: <100;201 7 >]

<collectn a emitn b; collectn b emitn 7 (= 201) a> « :
(a :: <3; 100; 4; <2; collect # (= 201)> val>;
b :: <100;201 7 >)]

<collectn a emitn b; collectn b emitn 7 (= 201) a> * :

[a :: <3; 100; &4; 201 & >;
b i <100;201 7 >)]

At this point termination of "a" must cause control to resume in "b” and then pass

the last element ("201") to the caller of "b". Note, the caller of "b" would have received
the first element of "b" at the point marked [1], after the return from the emit. This is
the point ([1]) when the value of emit is defined.
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RECURSION ORTHOGONAL TO SEQUENTIALITY

The functions below implement the "bottom up” function:
tbuf:tatom?else(t. (buf )
Preliminary functions:

au lst

v i 2nd

top :: st

stack push x :: <x> conc stack

stack pop :: stack tail
Top level function:
tbuf <<ty <<><>>> /(g %) val v top 1st
where
s g it's a notempty exs

top empty then

<s a pop; s v pop pop push
(s v pop top conc <s v top f>)>

else
s a top lst atom? then
<s a pop push (a top tail);
s v pop push (s v top conc <s a top 1st>)>
else
<s a pop push (a top tail) push (a top 1st);
s v push <>>

o A




] APPENDIX VIII
IMPLEMENTATION OF GEN IN THE INITIAL BASIS

For a potentially unbounded sequence, s, and an index, i, the following functions
define the sequence s with it ith element "gened"--e.g.

<]; <3;6>; 7> genf 2 = <}; 3; 65 7>

To obtain the actual function, both s and i must be encoded in a second sequence
argument to f. They are passed as globals here for “clarity”.

s genf i <nil; 1;0> / (f %). (lst %)
where

q f :iq 2nd = i then (s sub i lengthge (q 3rd + 1))
then <s sub i sub (q 3rd + 1); g 2nd; q 3rd + 1>
else.}

(s lengthge (g 2nd) exs
then <s sub (g 2nd); q 2nd + 1; 0>)

(The tirst element of q is the element of the result sequence. The second element is an
index for s. The third is an index for s; when the second element is equal to i.)

Note, the sub function is the first function defined in Chapter 2:
ssubiunipos. (ridt). s val

None of pos, rid and lengthge is defined using gen.
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